首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evidence for the existence of a chemical mechanism in surface‐enhanced resonance Raman scattering (SERRS) of rhodamine 6G (R6G) adsorbed on colloidal silver excited at 1064 nm is reported on the basis of experimental and theoretical analyses. A weak absorption peak at around 1060 nm for R6G‐functionalized silver nanoparticles was observed, which is not present in the individual spectra of R6G or silver nanoparticles. Theoretically, the charge difference density reveals that this weak absorption is a metal‐to‐molecule charge transfer excited state. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We describe quantum‐size and binding‐site effects on the chemical and local field enhancement mechanisms of surface‐enhanced resonance Raman scattering (SERRS), in which the pyridine molecule is adsorbed on one of the vertices of the Ag20 tetrahedron. We first investigated the influence of the binding site on normal Raman scattering (NRS) and excited state properties of optical absorption spectroscopy. Second, we investigated the quantum‐size effect on the electromagnetic (EM) and chemical mechanism from 300 to 1000 nm with charge difference density. It is found that the strong absorption at around 350 nm is mainly the charge transfer (CT) excitation (CT between the molecule and the silver cluster) for large clusters, which is the direct evidence for the chemical enhancement mechanism for SERRS; for a small cluster the strong absorption around 350 nm is mainly intracluster excitation, which is the direct evidence for the EM enhancement mechanism. This conclusion is further confirmed with the general Mie theory. The plasmon peak in EM enhancement will be red‐shifted with the increase of cluster size. The influence of the binding site and quantum‐size effects on NRS, as well as chemical and EM enhancement mechanisms on SERRS, is significant. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
文中从实验和计算两方面报道了在514.5 nm激发光下P-Thiocresol吸附在银胶表面系统的表面增强拉曼散射(SERS).文中分析了它的增强机制,发现增强主要来自于电磁场增强.如果考虑距离为2nm的两个银纳米粒子的耦舍效应,两粒子之间的SERS的电磁场增强为7.16 × 107.静态化学增强亦起到部分增强作用,它的增强倍数为6.所以,总的SERS增强,包括静态化学增强和电磁场增强,是Gtotal=Gsc ×GEM=4.4×108.我们也理论地研究了此系统的表面增强共振拉曼散射(SERRS).当激发光与P-Thiocresol-Ag3系统的激发态共振时,电荷转移机制(化学增强)也将起到重要作用,最强的增强可迭106.我们使用电荷密度将激发光下p-Thlocresol和Ag团簇问的电荷转移结果可视化,这是电荷转移的直接理论证据.对于SERRS增强,包括电荷转移和电磁场增强机制,能达到1013.  相似文献   

4.
We describe the chemical and electromagnetic enhancements of surface‐enhanced resonance Raman scattering (SERRS) for the pyridine molecule absorbed on silver clusters, in which different incident wavelength regions are dominated by different enhancement mechanisms. Through visualization we theoretically investigate the charge transfer (CT) between the molecule and the metal cluster, and the charge redistribution (CR) within the metal on the electronic intracluster collective oscillation excitation (EICOE). The CT between the metal and the molecule in the molecule–metal complex is considered as an evidence for chemical enhancement to SERRS. CR within the metal on EICOE is considered as an evidence for the electromagnetic enhancement by collective plasmons. For the incident wavelength from 300 to 1000 nm, the visualized method of charge difference density can classify the different wavelength regions for chemical and electromagnetic enhancement, which are consistent with the formal fragmented experimental studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
利用密度泛函和含时密度泛函理论方法研究了1,4-苯二硫醇分子在两个金团簇之间的表面增强拉曼散射及表面增强共振拉曼散射光谱. 采用对应四种不同形式的电荷转移激发态能量的入射光,计算了表面增强共振拉曼光谱. 结果显示,光谱增强的效果与电荷转移的形式密切相关. 不同的电荷转移形式对增强因子的贡献是有差异的.  相似文献   

6.
Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even ``breathing' of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.  相似文献   

7.
The recently developed isotopically edited internal standard approach for surface‐enhanced resonance Raman scattering (SERRS) based chemical quantification is extended to demonstrate multiplexed detection of four different isotopic variants of a single chromophore. More specifically, it is shown that rhodamine‐6G (R6G) with 0, 2, 4, or 6 deuterium substitutions may be reliably quantified in either two‐ or three‐component mixtures. Thus, one isotopic species of known concentration may be used as an internal standard to determine the concentrations of two other isotopic components in a mixture. The concentrations of isotopic R6G SERRS chromophores are determined using partial least squares calibration and shown to yield a predictive accuracy of about ± 10% of the total R6G concentration (over 1–50 nM concentration range). These results set the stage for the use of such isotopic variants as tags for the SERRS/SERS quantitation of mixtures containing proteins, peptides, and other compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
R6G单分子表面增强共振拉曼散射光谱探测研究   总被引:3,自引:1,他引:2  
以共焦显微系统为平台,研究了不同浓度的R6G银溶胶的表面增强共振拉曼散射(SERRS)光谱, 结果表明不同浓度溶液中的R6G分子表现出了不同的光谱特性。在浓度为10-13mol·L-1的R6G银溶胶中 得到了R6G单分子的表面增强共振拉曼散射光谱,观察到了一些光谱非均匀变化现象,如谱色散、谱线的 强度起伏、拉曼谱的偏振化以及分子的闪烁等,并对这些现象进行了分析,证明得到的是R6G单分子的 SERRS光谱。文章还对单分子检测中的一些关键问题进行了分析与讨论,确定了单分子SERRS光谱检测的 适当条件。  相似文献   

9.
The essence of the chemical mechanism for surface‐enhanced resonance Raman scattering (SERRS) is the charge transfer (CT) between the metal and the molecule at the resonant electronic transition, which results in the mode‐selective enhancement in the SERRS spectrum. The site‐orientated CT can directly interpret the mode‐selective chemical enhancement in SERRS. However, it is a great challenge to intutively visualize the orientation and site of the CT. In this paper, for the pyrazine–Au2 complex, a three‐dimensional (3D) cubic representation is built to provide direct visual evidence for chemical mechanisms of SERRS via CT from the Au2 cluster to pyrazine at the resonant electronic transition. The relationship between the mode‐selective enhancements in SERRS and the site‐orientated CT was clearly revealed. The intracluster excitation (analog of plasmon excitation in large naonoparticles) was also visualized by the 3D cubic presentation, which provided the direct evidence of local electromagnetic field enhancement of SERRS. To study the quantum size effect and the coupling effect of the nanoparticles, the photoexcitation mechanisms of the Au20–pyrazine complex and the Au20–pyrazine–Au20 junction were also investigated. The tunneling charge transfer from one Au20 cluster to another Au20 cluster outside the pyrazine in Au20–pyrazine–Au20 junction was also revealed visually. The calculated normalized extinction spectra of Au nanoparticles using the generalized Mie theory reveal that the resonance peak is red‐shifted due to the coupling between particles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Nonresonance (or normal) Raman scattering (NRS), resonance Raman scattering (RRS), surface‐enhanced Raman scattering (SERS), and surface‐enhanced RRS (SERRS) spectra of [Fe(tpy)2]2+ complex dication (tpy = 2,2':6',2''‐terpyridine) are reported. The comparison of RRS/NRS and SERRS/SERS excitation profiles of [Fe(tpy)2]2+ spectral bands in the range of 445–780 nm is supported by density functional theory (DFT) calculations, Raman depolarization measurements, comparison of the solid [Fe(tpy)2](SO4)2 and solution RRS spectra, and characterization of the Ag nanoparticle (NP) hydrosol/[Fe(tpy)2]2+ SERS/SERRS active system by surface plasmon extinction spectrum and transmission electron microscopy image of the fractal aggregates (D = 1.82). By DFT calculations, both the Raman active modes and the electronic states of the complex have been assigned to the symmetry species of the D2d point group. It has been demonstrated that upon the electrostatic bonding of the complex dication to the chloride‐modified Ag NPs, the geometric and ground state electronic structure of the complex and the identity of the three different metal‐to‐ligand charge transfer (1MLCT) electronic transitions remain preserved. On the other hand, the effect of ion pairing manifests itself by a slight change in localization of one of the electronic transitions (with max. at 552 nm) as well as by promotion of the Herzberg–Teller activation of E modes resulting from coupling of E and B2 excited electronic states. Finally, the very low, 1 × 10−11 M SERRS spectral detection limit of [Fe(tpy)2]2+ at 532‐nm excitation is attributed to a concerted action of the electromagnetic and molecular resonance mechanism, in conjunction to the electrostatic bonding of the complex dication to the chloride‐modified Ag NP surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of a static external electric field on surface‐enhanced Raman scattering is investigated by calculating the Raman spectra and excited state properties of pyridine–Au20 complex with the density functional theory and time‐dependent density functional theory method. The external electric field with orientation parallel (positive) or antiparallel (negative) to the permanent dipole moment is respectively applied on the complex. This field slightly changes the equilibrium geometry and polarizabilities, which results in shifted vibration frequencies and selectively enhanced Raman intensities. The changes of charge transfer (CT) excited states in response to the electric field are visualized by employing the charge difference densities. Further, the energy of charge transfer transition is tuned by electric field to be resonant or not with the incident light, leading to the Raman intensities are enhanced or not enhanced. At the same time, the intensities of vibration modes are sensitive to the orientation of the field. The positive electric field enhances the totally symmetric ring breathing mode (~1009 cm−1) but suppresses the trigonal ring breathing mode (~1051 cm−1). On the contrary, the mode at 1051 cm−1 is more enhanced than the mode at 1009 cm−1 when the negative electric field is applied on the complex. The Raman spectra could be modulated by tuning the strength and direction of the electric field. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In the present paper, we discuss the molecular information that can be derived from surface‐enhanced resonance Raman Scattering (SERRS) experiments performed with different excitation wavenumbers, which are close to resonance with an excited electronic state of the molecule [surface‐enhanced Raman dispersion spectroscopy (SERADIS)]. We specifically consider the situation, where a molecule is physisorbed to a site characterized by a local electric field with a direction independent of the direction of the external, exciting field. The molecular information available in this experimental situation is compared with the information available in a corresponding Raman dispersion spectroscopy (RADIS) experiment performed on a free molecule or a molecule physisorbed to a site, where the local field is isotropic. The consequences for resonance Raman scattering (RRS) and RADIS, when the molecule is adsorbed in the highly anisotropic hot spot (HS), are discussed; here it is shown that only the molecular information originating from the symmetric part of the scattering tensor can survive in SERRS and in SERADIS. Besides, it is shown that the depolarization ratio can no longer be used to discriminate between totally and non‐totally symmetric modes in the polarized surface‐enhanced Raman scattering (SERS) spectra. These results have implications for the resonance Raman spectra, but even more important for the application of the resonance Raman effect in the investigation of excited vibronic molecular states, in general, and in the investigation of electronic states in larger bio‐molecules, such as the various metallo‐porphyrins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Single‐component self‐assembled monolayers (SAMs) of mercaptoethanesulfonate (MES) on Ag surfaces were studied with surface‐enhanced resonance Raman scattering (SERRS) spectroscopy with a view to their application to immobilize (ferro)cytochrome c (cyt c). SERS studies revealed that MES molecules adopt primarily trans (T) conformation even at early stages of the SAM growth and over wide range of pH values. High accessibility of the negatively charged groups for (bio)molecules in solution makes single‐component MES SAMs suitable linkage monolayers for electrostatic attachment of cyt c, which was verified with SERRS. Cyt c was successfully anchored to MES‐coated Ag at natural (∼5), neutral, and isoelectric point (10.6) pH. At pH = 7.0 and 10.6, SERRS bands characteristic of native six‐coordinated low‐spin (6cLS) heme iron configuration were detected. Lack of buffering resulted in additional appearance of five‐coordinated high‐spin (5cHS) SERRS markers and the presence of bands indicating ferric ion. An electrostatic attraction between protein and SAM was confirmed to exclude the hydrophobic interactions involved in cyt c binding. Cyt c attached to MES SAM on Ag was found to be electroactive at neutral pH, and protein oxidation was assisted with reversible conversion of 6cLS to the non‐native 5cHS state. Alteration of heme orientation deduced from SERRS spectra upon change of redox state allowed us to propose the protein dynamics as the electron transfer rate‐limiting step. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
pacc:5240F,7830Weinvestigatedpolarizationdependencesof surfaceenhancedresonanceRamanscattering(SERRS)andsurfaceplasmonresonance(SPR)toidentifytheSERRSyieldingSPRbands.We alsostudiedSERRSexcitationspectraforsingle Agnano-aggregateswiththeSPRbandstoex plore…  相似文献   

16.
用一种简单的方法制备银纳米粒子, 研究了此纳米粒子作为SERS基底、吸附剂和光催化剂的多功能性。在光照条件下研究其对染料分子的光催化性能, 用紫外光谱和表面增强拉曼光谱对整个光催化过程进行动态跟踪检测, 实验结果表明染料分子光照条件下确实被催化降解了。本实验不仅合成了多功能的基底材料, 还赋予了表面增强拉曼光谱新的应用价值, 为光催化实验提供了新的动态跟踪检测方法。  相似文献   

17.
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4‐aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS‐based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80–100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 × 104 relative to silver colloid, which might have resulted from the presence of ‘hot‐spots’ at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 × 107 by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface. SERS‐based Raman mapping technique in the form of line scanning further illustrates the good SERS activity and reproducibility on the silver clusters. Finally, 4‐mercaptopyridine (4‐Mpy) was chosen as an analyte and the lowest detected concentration was investigated by the SERS‐active silver clusters. A concentration of 1.6 × 10−10 M 4‐Mpy could be detected with the SERS‐active silver clusters, showing the great potential of the technique in practical applications of microanalysis with high sensitivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Surface‐enhanced Raman scattering (SERS) spectra of Ag@polypyrrole (PPy) nanoparticles with both 488 and 1064 nm excitation were investigated. Experimental results as well as theoretical analysis demonstrated that electromagnetic (EM) enhancement and charge transfer (CT) both rebounded to the SERS effect of Ag@PPy nanoparticles. When near‐IR excitation (1064 nm) was used for the SERS measurements, the contribution from CT was amplified relative to that from EM because the energy of the near‐IR excitation is far from the surface plasmon resonance of the nanosized Ag particles. The increased doping level of PPy, leading to optimal energy matching between the Fermi levels of the Ag nanoparticles and the energy levels in PPy molecules, could obviouslyenhance the SERS signal. These results suggested that the SERStechnique wasan effective tool for investigating the doping effect and interface interaction in metal‐conductingpolymer composite nanoparticles. In particular, the SERS technique with near‐IR excitation could give more information regarding the contribution of the charge‐transfer mechanism to the spectral enhancement of this kind of system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Non‐degenerate second‐order scattering due to interaction of infrared and ultraviolet pulses is observed in picosecond infrared‐pump/anti‐Stokes Raman‐probe experiments under electronic resonance conditions. We detected resonance hyper‐Rayleigh scattering at the sum frequency of the pulses as well as the corresponding frequency‐down‐shifted resonance hyper‐Raman lines. Nearly coinciding resonance hyper‐Raman and one‐photon resonance Raman spectra indicate conditions of A‐term resonance Raman scattering. Second‐order scattering is distinguished from transient anti‐Stokes Raman scattering of v = 1 to v = 0 transitions and v = 1 to v′ = 1 combination transitions by taking into account their different spectral and temporal behaviour. Separating these processes is essential for a proper analysis of transient vibrational populations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, we demonstrate that the applied electric‐field strength and orientation can multiply modulate the Raman intensity and vibrational wavenumber of small molecule–metal complex, 1,4‐benzenedithiol–Au2 (1,4BDT–Au2), by density functional theory and time‐dependent density functional theory simulations. The polarizabilities are changed by the applied electric fields, leading to enhanced specific vibrational intensity and shifted vibrational wavenumber of the surface‐enhanced Raman scattering effect. The applied electric fields perturb the bonds and angles of the 1,4BDT–Au2 complex. Owing to this reason, the peaks of Raman spectra related to these structures exhibit distinguishable responses in quasi‐static field (low‐frequency oscillating electric field). We use the visualized method of charge difference density to show that the electric fields tune the traditional excited state to pure charge‐transfer excited state. The charge‐transfer resonance transition produces enhanced Raman intensities for non‐totally symmetric modes and totally symmetric modes. These simulation results of the function of static electric field provide new guidance for the surface‐enhanced Raman scattering measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号