首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We investigate the relation between the cone ${\mathcal{C}^{n}}$ of n × n copositive matrices and the approximating cone ${\mathcal{K}_{n}^{1}}$ introduced by Parrilo. While these cones are known to be equal for n ≤ 4, we show that for n ≥ 5 they are not equal. This result is based on the fact that ${\mathcal{K}_{n}^{1}}$ is not invariant under diagonal scaling. We show that for any copositive matrix which is not the sum of a nonnegative and a positive semidefinite matrix we can find a scaling which is not in ${\mathcal{K}_{n}^{1}}$ . In fact, we show that if all scaled versions of a matrix are contained in ${\mathcal{K}_{n}^{r}}$ for some fixed r, then the matrix must be in ${\mathcal{K}_{n}^{0}}$ . For the 5 × 5 case, we show the more surprising result that we can scale any copositive matrix X into ${\mathcal{K}_{5}^{1}}$ and in fact that any scaling D such that ${(DXD)_{ii} \in \{0,1\}}$ for all i yields ${DXD \in \mathcal{K}_{5}^{1}}$ . From this we are able to use the cone ${\mathcal{K}_{5}^{1}}$ to check if any order 5 matrix is copositive. Another consequence of this is a complete characterisation of ${\mathcal{C}^{5}}$ in terms of ${\mathcal{K}_{5}^{1}}$ . We end the paper by formulating several conjectures.  相似文献   

2.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

3.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

4.
In this paper we give criteria for a finite group to belong to a formation. As applications, recent theorems of Li, Shen, Shi and Qian are generalized. Let G  be a finite group, $\cal F$ a formation and p  a prime. Let $D_{\mathcal {F}}(G)$ be the intersection of the normalizers of the $\cal F$ -residuals of all subgroups of G, and let $D_{\mathcal {F}}^{p}(G)$ be the intersection of the normalizers of $(H^{\cal F}O_{p'}(G))$ for all subgroups H of G. We then define $D_{\mathcal F}^{0}(G)=D_{\mathcal F, p}^{~0}(G)=1$ and $D_{\mathcal F}^{i+1}(G)/D_{\mathcal F}^{i}(G)=D_{\mathcal F}(G/D_{\mathcal F}^{i}(G))$ , $D_{\mathcal F, p}^{i+1}(G)/D_{\mathcal F, p}^{~i}(G)=D_{\mathcal F, p}(G/D_{\mathcal F, p}^{~i}(G))$ . Let $D_{\mathcal {F}}^{\infty}(G)$ and $D_{\mathcal {F}, p}^{~\infty}(G)$ denote the terminal member of the ascending series of $D_{\mathcal F}^{i}(G)$ and $D_{\mathcal F, p}^{~i}(G)$ respectively. In this paper we prove that under certain hypotheses, the the $\cal F$ -residual $G^{\cal F}$ is nilpotent (respectively,p-nilpotent) if and only if $G=D_{\mathcal {F}}^{\infty}(G)$ (respectively, $G=D_{\mathcal {F}, p}^{~\infty}(G)$ ). Further more, if the formation $\cal F$ is either the class of all nilpotent groups or the class of all abelian groups, then $G^{\cal F}$ is p-nilpotent if and only if and only if every cyclic subgroup of G order p and 4 (if p?=?2) is contained in $D_{\mathcal {F}, p}^{~\infty}(G)$ .  相似文献   

5.
In this paper, we prove stability of contact discontinuities for full Euler system. We fix a flat duct ${\mathcal{N}_0}$ of infinite length in ${\mathbb{R}^2}$ with width W 0 and consider two uniform subsonic flow ${{U_l}^{\pm}=(u_l^{\pm}, 0, pl,\rho_l^{\pm})}$ with different horizontal velocity in ${\mathcal{N}_0}$ divided by a flat contact discontinuity ${\Gamma_{cd}}$ . And, we slightly perturb the boundary of ${\mathcal{N}_0}$ so that the width of the perturbed duct converges to ${W_0+\omega}$ for ${|\omega| < \delta}$ at ${x=\infty}$ for some ${\delta >0 }$ . Then, we prove that if the asymptotic state at left far field is given by ${{U_l}^{\pm}}$ , and if the perturbation of boundary of ${\mathcal{N}_0}$ and ${\delta}$ is sufficiently small, then there exists unique asymptotic state ${{U_r}^{\pm}}$ with a flat contact discontinuity ${\Gamma_{cd}^*}$ at right far field( ${x=\infty}$ ) and unique weak solution ${U}$ of the Euler system so that U consists of two subsonic flow with a contact discontinuity in between, and that U converges to ${{U_l}^{\pm}}$ and ${{U_r}^{\pm}}$ at ${x=-\infty}$ and ${x=\infty}$ respectively. For that purpose, we establish piecewise C 1 estimate across a contact discontinuity of a weak solution to Euler system depending on the perturbation of ${\partial\mathcal{N}_0}$ and ${\delta}$ .  相似文献   

6.
Given n, N ≥ 1 we construct a set of points ${\lambda_1,{\ldots},\lambda_{N^n}\in{\mathbb D}^n}$ such that for each rational inner function f on ${{\mathbb D}^n}$ of degree less than N the Pick problem on ${{\mathbb D}^n}$ with data ${\lambda_1,{\ldots},\lambda_{N^n}}$ and ${f(\lambda_1),{\ldots},f(\lambda_{N^n})}$ has a unique solution. In particular, we construct a 1-dimensional inner variety V and show that the points ${\lambda_1,{\ldots},\lambda_{N^n}}$ may be chosen almost arbitrarily in ${V\cap{\mathbb D}^n}$ . Our results state that f is uniquely determined in the Schur class of ${{\mathbb D}^n}$ by its values on ${\lambda_1,{\ldots},\lambda_{N^n}}$ .  相似文献   

7.
In this paper we classify the factorable surfaces in the three-dimensional Euclidean space ${\mathbb{E}^{3}}$ and Lorentzian ${\mathbb{E}_{1}^{3}}$ under the condition ??r i ?=??? i r i , where ${\lambda_{i}\in\mathbb{R}}$ and ?? denotes the Laplace operator and we obtain the complete classification for those ones.  相似文献   

8.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

9.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

10.
Conservative subtheories of ${{R}^{1}_{2}}$ and ${{S}^{1}_{2}}$ are presented. For ${{S}^{1}_{2}}$ , a slight tightening of Je?ábek??s result (Math Logic Q 52(6):613?C624, 2006) that ${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$ is presented: It is shown that ${T^{0}_{2}}$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this ${\forall\Sigma^{b}_{1}}$ -theory, we define a ${\forall\Sigma^{b}_{0}}$ -theory, ${T^{-1}_{2}}$ , for the ${\forall\Sigma^{b}_{0}}$ -consequences of ${S^{1}_{2}}$ . We show ${T^{-1}_{2}}$ is weak by showing it cannot ${\Sigma^{b}_{0}}$ -define division by 3. We then consider what would be the analogous ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ based on Pollett (Ann Pure Appl Logic 100:189?C245, 1999. It is shown that this theory, ${{T}^{0,\left\{2^{(||\dot{id}||)}\right\}}_{2}}$ , also cannot ${\Sigma^{b}_{0}}$ -define division by 3. On the other hand, we show that ${{S}^{0}_{2}+open_{\{||id||\}}}$ -COMP is a ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ . Finally, we give a refinement of Johannsen and Pollett (Logic Colloquium?? 98, 262?C279, 2000) and show that ${\hat{C}^{0}_{2}}$ is ${\forall\hat\Sigma^{b}_{1}}$ -conservative over a theory based on open cl-comprehension.  相似文献   

11.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

12.
Denoting by ${\varepsilon\subseteq\mathbb{R}^2}$ the set of the pairs ${(\lambda_1(\Omega),\,\lambda_2(\Omega))}$ for all the open sets ${\Omega\subseteq\mathbb{R}^N}$ with unit measure, and by ${\Theta\subseteq\mathbb{R}^N}$ the union of two disjoint balls of half measure, we give an elementary proof of the fact that ${\partial\varepsilon}$ has horizontal tangent at its lowest point ${(\lambda_1(\Theta),\,\lambda_2(\Theta))}$ .  相似文献   

13.
Let ${\mathbb{Q}^3}$ be the moduli space of oriented circles in the three dimensional unit sphere ${\mathbb{S}^3}$ . Given a natural complex structure such space becomes a three dimensional complex manifold, with a M?bius invariant Hermitian metric h of type (2, 1). Up to M?bius transformations, all geodesics with respect to the Lorentz metric g = Re(h) on ${\mathbb{Q}^3}$ are determined to form a one-parameter family of circles on a helicoid in a space form ${\mathbb{R}^3, \mathbb{H}^3}$ or ${\mathbb{S}^{3}}$ , resp. We show also that any two oriented circles in ${\mathbb{S}^3}$ are connected by countably infinitely many geodesics in ${\mathbb{Q}^3}$ .  相似文献   

14.
Triebel (J Approx Theory 35:275–297, 1982; 52:162–203, 1988) investigated the boundary values of the harmonic functions in spaces of the Triebel–Lizorkin type ${\mathcal F^{\alpha,q}_{p}}$ on ${\mathbb{R}^{n+1}_+}$ by finding an characterization of the homogeneous Triebel–Lizorkin space ${{\bf \dot{F}}^{\alpha,q}_p}$ via its harmonic extension, where ${0 < p < \infty, 0 < q \leq \infty}$ , and ${\alpha < {\rm min}\{-n/p, -n/q\}}$ . In this article, we extend Triebel’s result to α < 0 and ${0 < p, q \leq \infty}$ by using a discrete version of reproducing formula and discretizing the norms in both ${\mathcal{F}^{\alpha,q}_{p}}$ and ${{\bf{\dot{F}}}^{\alpha,q}_p}$ . Furthermore, for α < 0 and ${1 < p,q \leq \infty}$ , the mapping from harmonic functions in ${\mathcal{F}^{\alpha,q}_{p}}$ to their boundary values forms a topological isomorphism between ${\mathcal{F}^{\alpha,q}_{p}}$ and ${{\bf \dot{F}}^{\alpha,q}_p}$ .  相似文献   

15.
We prove two stability-type estimates involving the Schwarz rearrangement of the normalized first eigenfunction u 1?>?0 of certain linear elliptic operators whose first eigenvalue λ1 is close to the lowest possible one (i.e., ${\lambda_1^\star}$ , the first eigenvalue of the Dirichlet Laplacian in a suitable ball). In particular, we prove that if ${\lambda_1\approx \lambda_1^\star}$ then the L -distance between the rearrangement ${u_1^\star}$ and the normalized first eigenfunction of the Dirichlet Laplacian corresponding to ${\lambda_1^\star}$ is less than a suitable power of the difference ${\lambda_1-\lambda_1^\star}$ times a universal constant. We also show that the L -distance between the first eigenfunction of the Dirichlet Laplacian in a ball whose first eigenvalue equals λ1 and the rearrangement ${u_1^\star}$ can be controlled with a power of the value assumed by ${u_1^\star}$ on the boundary of that ball.  相似文献   

16.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

17.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

18.
19.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

20.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号