首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The minireview presented here summarizes current information on the structure and function of PsbO, the photosystem II (PSII) manganese-stabilizing protein, with an emphasis on the protein's assembly into PSII, and its function in facilitating rapid turnovers of the oxygen evolving reaction. Two putative mechanisms for functional assembly of PsbO, which behaves as an intrinsically disordered polypeptide in solution, into PSII are proposed. Finally, a model is presented for the role of PsbO in relation to the function of the Mn, Ca(2+), and Cl(-) cofactors that are required for water oxidation, as well as for the action of hydroxide and small Mn reductants that inhibit the function of the active site of the oxygen-evolving complex.  相似文献   

2.
A refined computational structural model of the oxygen-evolving complex (OEC) of photosystem II (PSII) is introduced. The model shows that the cuboidal core Mn3CaO4 with a "dangler" Mn ligated to a corner mu4-oxide ion is maximally consistent with the positioning of the amino acids around the metal cluster as characterized by XRD models and high-resolution spectroscopic data, including polarized EXAFS of oriented single crystals and isotropic EXAFS. It is, therefore, natural to expect that the proposed structural model should be particularly useful to establish the structure of the OEC, consistently with high-resolution spectroscopic data, and for elucidating the mechanism of water-splitting in PSII as described by the intermediate oxidation states of the EC along the catalytic cycle.  相似文献   

3.
Siegbahn PE 《Chemphyschem》2011,12(17):3274-3280
The procedure for fixing atoms of amino acid residues in cluster model calculations on enzymes is reviewed. Examples from recent calculations on photosystem II (PSII) and Mo,Cu-dependent CO dehydrogenase are given. In this context, the cluster model work on finding a mechanism for O-O bond formation and a structure of the oxygen-evolving complex in PSII is also reviewed. In that work, fixing certain atoms played an important role. The main part of the present study concerns the mechanism in PSII using models based on the new high-resolution (1.9 ?) X-ray structure, which is compared to that using the old, theoretically suggested, structure. It is concluded that the mechanism remains the same, with a similar barrier height. Finally, a connection between the OEC structure and Mn,Ca-containing minerals is also briefly discussed.  相似文献   

4.
Numerous studies over the last 25 years have established that the extrinsic PsbO, PsbP and PsbQ proteins of Photosystem II play critically important roles in maintaining optimal manganese, calcium and chloride concentrations at the active site of Photosystem II. Chemical or genetic removal of these components induces multiple and profound defects in Photosystem II function and oxygen-evolving complex stability. Recently, a number of studies have indicated possible additional roles for these proteins within the photosystem. These include putative enzymatic activities, regulation of reaction center protein turnover, modulation of thylakoid membrane architecture, the mediation of PS II assembly/stability, and effects on the reducing side of the photosystem. In this review we will critically examine the findings which support these auxiliary functions and suggest additional lines of investigations which could clarify the nature of the functional interactions of these proteins with the photosystem.  相似文献   

5.
The mechanism of the generation of dioxygen at the oxygen-evolving complex (OEC) of photosystem II (PSII), a crucial step in photosynthesis, is still under debate. The simplest unit present in the OEC that can produce O2 is a dinuclear oxo-bridge manganese complex within the tetranuclear Mn4 cluster. In this paper we report a theoretical study of the model complexes [Mn2(mu-O)2(NH3)6(H2O)2]n+ (n = 2-5), for which density functional calculations have been carried out for several electronic configurations. The molecular orbital picture deduced from the calculations indicates that one-electron oxidation of the Mn2IV,IV/(O2-)2 complex (n = 4) mostly affects the oxygen atoms, thus ruling out the existence of a MnV oxidation state in this context, while the incipient formation of an O-O bond in the O2(3-) transient species evolves exothermally toward the dissociation of dioxygen and a Mn2II,III couple. These results identify the electronic features that could be needed to enable an intramolecular mechanism of oxygen-oxygen bond formation to exist at the OEC during photosynthesis.  相似文献   

6.
The action of low pH treatment (pH 3.6) known to release Ca2+ from the oxygen-evolving complex in photosystem II (PSII) membranes and to induce Ca2+-revers-ible inhibition of electron transport at the acceptor side of PSII in thylakoid membranes (TM) was compared in PSII membranes and TM. The rate of the inactivation of electron transport by low pH was four times higher in TM than in PSII membranes. Ferricyanide accelerated the inactivation of PSII membranes but decreased it in the case of TM. Low pH treatment also greatly modified the fluorescence induction kinetics in both preparations, but significant differences have been found in the fluorescence induction kinetics of treated TM and PSII membranes. Calcium restored the electron transport activity and fluorescence induction kinetics in PSII membranes and TM, whereas diphenylcarbazide restored these functions only in PSII membranes. The reactivation of Ca-depleted PSII membranes was more effective in the dark, whereas the reactivation of TM required weak light. In the case of PSII membranes subjected to low pH citrate buffer, maximal reactivation was observed at 60 mM Ca2+ but for TM about 10 mM Ca2+ was required and 60 mM fully inhibited electron transport in TM during reactivation. These results indicate that the Ca-dependent inactivation of the acceptor side of PSII in TM after low pH treatment cannot be explained by the extraction of Ca2+ from the oxygen-evolving complex. It is rather suggested that the Ca2+ involved in this inhibition is bound to the acceptor side of the photosystem near to the QA-non-heme iron binding site and may participate in the binding of a polypeptide of the PSII light antenna complex to the PSII reaction center.  相似文献   

7.
The paper describes recent advances towards the construction of functional mimics of the oxygen evolving complex in photosystem II (PSII) that are coupled to photoinduced charge separation. Some key principles of PSII and artificial systems for light-induced charge accumulation are discussed. Systems are described where biomimetic electron donors--manganese complexes and tyrosine--have been linked to a Ru(II)-polypyridine photosensitiser. Oxidation of the donors by intramolecular electron transfer from the photo-oxidised Ru(III) complex has been studied using optical flash photolysis and EPR experiments. A step-wise electron transfer Mn(III,III)-->tyrosine Ru(III) has been demonstrated, in analogy to the reaction on the donor side of PSII. Electron transfer from the tyrosine to Ru(III) was coupled to tyrosine deprotonation. This resulted in a large reorganisation energy and thus a slow reaction rate, unless the tyrosine was hydrogen bonded or already deprotonated. A comparison with analogous reactions in PSII is made. Finally, light-induced oxidation of a manganese dimer linked to a Ru(II)-photosensitiser has been observed. Preliminary results suggest the possibility of photo-oxidising manganese dimers in several steps, which is an important advancement towards water oxidation.  相似文献   

8.
The PsbP and PsbQ proteins are extrinsic subunits of the photosystem II (PSII) supercomplex, which are found in green plants including higher plants and green algae. These proteins are thought to have evolved from their cyanobacterial homologs; cyanoP and cyanoQ respectively. It has been suggested that the functions of PsbP and PsbQ have largely changed from those of cyanoP and cyanoQ. In addition, multiple isoforms and homologs of PsbP and PsbQ were found in green plants, indicating that the acquisition of PsbP and PsbQ in PSII is not a direct path but a result of intensive functional divergence during evolution from cyanobacterial endosymbiont to chloroplast. In this review, we highlight newly introduced topics related to the functions and structures of both PsbP and PsbQ proteins. The present data suggest that PsbP together with PsbQ have specific and important roles in coordinating the activity of the donor and acceptor sides of PSII and stabilizing the active form of the PSII-light-harvesting complex II (LHCII) supercomplex.  相似文献   

9.
Oxidative and nitrosative stress leaves footprints in the plant chloroplast in the form of oxidatively modified proteins. Using a mass spectrometric approach, we identified 126 tyrosine and 12 tryptophan nitration sites in 164 nitrated proteolytic peptides, mainly from photosystem I (PSI), photosystem II (PSII), cytochrome b(6) /f and ATP-synthase complexes and 140 oxidation products of tyrosine, tryptophan, proline, phenylalanine and histidine residues. While a high number of nitration sites were found in proteins from four photosynthetic complexes indicating that the nitration belongs to one of the prominent posttranslational protein modifications in photosynthetic apparatus, amino acid oxidation products were determined mostly in PSII and to a lower extent in PSI. Exposure of plants to light stress resulted in an increased level of tyrosine and tryptophan nitration and tryptophan oxidation in proteins of PSII reaction center and the oxygen-evolving complex, as compared to low light conditions. In contrast, the level of nitration and oxidation of these amino acid residues strongly decreased for all light-harvesting proteins of PSII under the same conditions. Based on these data, we propose that oxidative modifications of proteins by reactive oxygen and nitrogen species might represent an important regulatory mechanism of protein turnover under light stress conditions, especially for PSII and its antenna proteins.  相似文献   

10.
Siegbahn PE 《Inorganic chemistry》2000,39(13):2923-2935
Hybrid density functional theory is used to study reasonably realistic models of the oxygen-evolving manganese complex in photosystem II. Since there is not yet any X-ray structure of the complex, other types of experimental and theoretical information are used to construct the model complexes. In these complexes, three manganese centers are predicted to be closely coupled by mu-oxo bonds in a triangular orientation. Using these models, the previously suggested oxygen radical mechanism for O2 formation is reinvestigated. It is found that the oxygen radical in the S3 state now appears in a bridging position between two manganese atoms. It is still suggested that only one manganese atom is redox-active. Instead, a number of surprisingly large trans-effects are found, which motivate the existence and define the function of the other manganese atoms in the Mn4 cluster. Calcium has a strong chelating effect which helps in the creation of the necessary oxygen radical. In the present model the chemistry preceding the actual O-O bond formation occurs in an incomplete cube with a missing corner and with two manganese and one calcium in three of the corners. The external water providing the second oxygen of O2 enters in the missing corner of the cube. The present findings are in most cases in good agreement with experimental results as given in particular by EXAFS.  相似文献   

11.
Triton X-100-induced inactivation and phosphatidylcholine-induced reactivation of photosystem II (PSII) membranes were investigated using oxygen electrode, variable fluorescence and spectroscopic techniques including absorption and circular dichroism spectroscopy. Incubation of the PSII membrane with Triton X-100 reduced the oxygen-evolving rate, modified the variable chlorophyll fluorescence kinetics, changed the protein secondary structures, altered the chlorophyll binding state to proteins and decreased the excitonic interaction of chlorophyll molecules. Phosphatidylcholine addition did not change the protein secondary structures, but could partially reactivate the reduced oxygen-evolving rate, and partly reversed the variable fluorescence parameters, the chlorophyll binding state and the excitonic interaction of the chlorophyll molecules. The results indicate that the phosphatidylcholine environment can optimize the tertiary structures of PSII.  相似文献   

12.
All higher life forms use oxygen and respiration as their primary energy source. The oxygen comes from water by solar-energy conversion in photosynthetic membranes. In green plants, light absorption in photosystem II (PSII) drives electron-transfer activation of the oxygen-evolving complex (OEC). The mechanism of water oxidation by the OEC has long been a subject of great interest to biologists and chemists. With the availability of new molecular-level protein structures from X-ray crystallography and EXAFS, as well as the accumulated results from numerous experiments and theoretical studies, it is possible to suggest how water may be oxidized at the OEC. An integrated sequence of light-driven reactions that exploit coupled electron-proton transfer (EPT) could be the key to water oxidation. When these reactions are combined with long-range proton transfer (by sequential local proton transfers), it may be possible to view the OEC as an intricate structure that is "wired for protons".  相似文献   

13.
Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII.  相似文献   

14.
The CyanoP protein is a cyanobacterial homolog of the PsbP protein, which is an extrinsic subunit of photosystem II (PSII) in green plant species. The molecular function of CyanoP has been investigated in mutant strains of Synechocystis but inconsistent results have been reported by different laboratories. In this study, we generated and characterized a Synechocystis mutant in which entire region of the CyanoP gene was eliminated. After repeated subculture in CaCl2-depleted medium, growth retardation was clearly observed for a CyanoP knockout mutant of Synechocystis sp. PCC 6803 (?P). The PSII-mediated oxygen-evolving activity of the ?P cells was more susceptible to depletion of CaCl2 than that of wild-type cells. The 77 K fluorescence emission spectra indicated that energy coupling between phycobilisome and PSII was perturbed in both wild-type and ?P cells under CaCl2-depleted conditions, and was more evident for the ?P mutant. To examine the association of CyanoP with PSII complexes, we tested several detergents for solubilization of thylakoid membranes and showed that CyanoP was partly included in fractions containing large protein complexes in gel-filtration analysis. These results indicate that CyanoP constitutively stabilizes PSII functionality in vivo.  相似文献   

15.
The Oxygen Evolving Complex in photosystem II, which is responsible for the oxidation of water to oxygen in plants, algae and cyanobacteria, contains a cluster of one calcium and four manganese atoms. This cluster serves as a model for the splitting of water by energy obtained from sunlight. The recent published data on the mechanism and the structure of photosystem II provide a detailed architecture of the oxygen-evolving complex and the surrounding amino acids. Biomimetically, we expect to learn some strategies from this natural system to synthesize an efficient catalyst for water oxidation, that is necessary for artificial photosynthesis.  相似文献   

16.
An oxygen-evolving photosynthetic reaction center complex (PSII) was adsorbed into nanopores in SBA, a mesoporous silica compound. We purified the dimer of PSII complex from a thermophilic cyanobacterium, Thermosynechococcus vulcanus, which grows optimally at 57 °C. The thermally stable PSII dimeric complex has a diameter of 20 nm and a molecular mass of 756 kDa and binds more than 60 chlorophylls. The SBA particles, with average internal pore diameters of 15 nm (SBA(15)) and 23 nm (SBA(23)), adsorbed 4.7 and 15 mg of PSII/g SBA, respectively. Measurement with a confocal laser-scanning microscope indicated the adsorption of PSII to the surface and the inner space of the SBA(23) particles, indicating the adsorption of PSII into the 23 nm silica nanopores. PSII did not bind to the inner pores of SBA(15). PSII bound to SBA(23) showed the high and stable activity of a photosynthetic oxygen-evolving reaction, indicating the light-driven electron transport from water to the quinone molecules added in the outer medium. The PSII-SBA conjugate can be a new material for photosensors and artificial photosynthetic systems.  相似文献   

17.
Electron and X-ray crystallography have provided intermediate structural models for photosystem II (PSII), the membrane located multisubunit complex which uses light energy to split water into its elemental constituents. This reaction is thermodynamically demanding and involves the production of redox potentials in excess of 1 V. Structural analyses have now shown that the primary oxidant, P680, is not a 'special pair' of chlorophylls, as in other types of photosynthetic reaction centres, but a tetramer of equally spaced chlorophyll a molecules. Its high redox potential, and the involvement of four weakly coupled isoenergetic monomers rather than a strongly excitonically coupled 'special pair', has implications for redox mechanisms which are unique to PSII, and therefore not found in any other photosynthetic system. The importance of these features is discussed.  相似文献   

18.
In the oxygen-evolving complex (OEC) of photosystem II (PSII) molecular oxygen is formed from two substrate water molecules that are ligated to a mu-oxo bridged cluster containing four Mn ions and one Ca ion (Mn4OxCa cluster; Ox symbolizes the unknown number of mu-oxo bridges; x >or= 5). There is a long-standing enigma as to when, where, and how the two substrate water molecules bind to the Mn4OxCa cluster during the cyclic water-splitting reaction, which involves five distinct redox intermediates (Si-states; i = 0,...,4). To address this question we employed hyperfine sublevel correlation (HYSCORE) spectroscopy on H217O-enriched PSII samples poised in the paramagnetic S2 state. This approach allowed us to resolve the magnetic interaction between one solvent exchangeable 17O that is directly ligated to one or more Mn ions of the Mn4OxCa cluster in the S2 state of PSII. Direct coordination of 17O to Mn is supported by the strong (A approximately 10 MHz) hyperfine coupling. Because these are properties expected from a substrate water molecule, this spectroscopic signature holds the potential for gaining long-sought information about the binding mode and site of one of the two substrate water molecules in the S2 state of PSII.  相似文献   

19.
The use of a computational docking protocol in conjunction with a protein homology model to derive molecular alignments for Comparative Molecular Field Analysis (CoMFA) was examined. In particular, the DOCK program and a model of the herbicidal target site, photosystem II (PSII), was used to derive alignments for two PSII inhibitor training sets, a set of benzo- and napthoquinones and a set of butenanilides. The protein design software in the QUANTA molecular modeling package was used to develop a homology model of spinach PSII based on the reported amino acid sequence and the X-ray crystal structure of the purple bacterium reaction center. The model is very similar to other reported PSII protein homology models. DOCK was then used to derive alignments for CoMFA modeling by docking the inhibitors in the PSII binding pocket. The molecular alignments produced from docking yielded highly predictive CoMFA models. As a comparison, the more traditional atom-atom alignments of the same two training sets failed to produce predictive CoMFA models. The general utilities of this application for homology model refinement and as an alternative scoring method are discussed.  相似文献   

20.
A series of complexes with the formula [Mn(III/IV)2(mu-O)2(L)2(X)2]3+ have been prepared in situ from Mn(II)LCl2 precursors by a general preparative method (L = terpy, Cl-terpy, Br-terpy, Ph-terpy, tolyl-terpy, mesityl-terpy, t Bu3-terpy, EtO-terpy, py-phen, dpya, Me2N-terpy, or HO-terpy, and X = a labile ligand such as water, chloride, or sulfate). The parent complex, where L = terpy and X = water, is a functional model for the oxygen-evolving complex of photosystem II (Limburg, et al. J. Am. Chem. Soc. 2001, 123, 423-430). Crystals of Mn(II)(dpya)Cl2, Mn(II)(Ph-terpy)Cl2, Mn(II)(mesityl-terpy)Cl2, and an organic-soluble di-mu-oxo di-aqua dimanganese complex, [Mn(III/)(IV)2(mu-O)2(mesityl-terpy)2(OH2)2](NO3)3, were obtained and characterized by X-ray crystallography. Solutions of the in situ-formed di-mu-oxo dimanganese complexes were characterized by electrospray mass spectrometry, EPR spectroscopy, and UV-visible spectroscopy, and the rates of catalytic oxygen-evolving activity were assayed. The use of Mn(II)LCl2 precursors leads to higher product purity of the Mn dimers while achieving the 1:1 ligand to Mn stoichiometry appropriate for catalytic activity assay. These methods can be used to screen the catalytic activity of other di-mu-oxo dimanganese complexes generated by using a ligand library.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号