首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaLOEt (LOEt?=[(η5‐C5H5)Co{P(O)(OEt)2}3]?) afforded the μ‐sulfato complex [(LOEtTi)2(μ‐O)2(μ‐SO4)] ( 2 ). In more concentrated sulfuric acid (>1 M ), the same reaction yielded the di‐μ‐sulfato complex [(LOEtTi)2(μ‐O)(μ‐SO4)2] ( 3 ). Reaction of 2 with HOTf (OTf=triflate, CF3SO3) gave the tris(triflato) complex [LOEtTi(OTf)3] ( 4 ), whereas treatment of 2 with Ag(OTf) in CH2Cl2 afforded the sulfato‐capped trinuclear complex [{(LOEt)3Ti3(μ‐O)3}(μ3‐SO4){Ag(OTf)}][OTf] ( 5 ), in which the Ag(OTf) moiety binds to a μ‐oxo group in the Ti3(μ‐O)3 core. Reaction of 2 in H2O with Ba(NO3)2 afforded the tetranuclear complex (LOEt)4Ti4(μ‐O)6 ( 6 ). Treatment of 2 with [{Rh(cod)Cl}2] (cod=1,5‐cyclooctadiene), [Re(CO)5Cl], and [Ru(tBu2bpy)(PPh3)2Cl2] (tBu2bpy=4,4′‐di‐tert‐butyl‐2,2′‐dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(LOEt)2Ti2(O)2(SO4){Rh(cod)}2][OTf]2 ( 7 ), [(LOEt)2Ti(O)2(SO4){Re(CO)3}][OTf] ( 8 ), and [{(LOEt)2Ti2(μ‐O)}(μ3‐SO4)(μ‐O)2{Ru(PPh3)(tBu2bpy)}][OTf]2 ( 9 ), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 μB. Treatment of zirconyl nitrate with NaLOEt in 3.5 M sulfuric acid afforded [(LOEt)2Zr(NO3)][LOEtZr(SO4)(NO3)] ( 10 ). Reaction of ZrCl4 in 1.8 M sulfuric acid with NaLOEt in the presence Na2SO4 gave the μ‐sulfato‐bridged complex [LOEtZr(SO4)(H2O)]2(μ‐SO4) ( 11 ). Treatment of 11 with triflic acid afforded [(LOEt)2Zr][OTf]2 ( 12 ), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{LOEtZr(SO4)(H2O)}33‐SO4)][OTf] ( 13 ). The ZrIV triflato complex [LOEtZr(OTf)3] ( 14 ) was prepared by reaction of LOEtZrF3 with Me3SiOTf. Complexes 4 and 14 can catalyze the Diels–Alder reaction of 1,3‐cyclohexadiene with acrolein in good selectivity. Complexes 2 – 5 , 9 – 11 , and 13 have been characterized by X‐ray crystallography.  相似文献   

2.
Yellow–orange tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) dihydrate, [Cd(C8HN4O2)2(H2O)4]·2H2O, (I), and yellow tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) 1,4‐dioxane solvate, [Cd(C8HN4O2)2(H2O)4]·C4H8O2, (II), contain centrosymmetric mononuclear Cd2+ coordination complex molecules in different conformations. Dark‐red poly[[decaaquabis(μ2‐3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κ2N:N′)bis(μ2‐3‐cyano‐4‐dicyanomethylene‐1H‐pyrrole‐2,5‐diolato‐κ2N:N′)tricadmium] hemihydrate], [Cd3(C8HN4O2)2(C8N4O2)2(H2O)10]·0.5H2O, (III), has a polymeric two‐dimensional structure, the building block of which includes two cadmium cations (one of them located on an inversion centre), and both singly and doubly charged anions. The cathodoluminescence spectra of the crystals are different and cover the wavelength range from UV to red, with emission peaks at 377 and 620 nm for (III), and at 583 and 580 nm for (I) and (II), respectively.  相似文献   

3.
Two new oxo complexes, namely hexa‐μ2‐acetato‐acetato­aquabis­(di‐3‐pyridylamine)di‐μ3‐oxo‐tetra­iron(III) chloride mono­hydrate ethanol 1.25‐solvate, [Fe4(C2H3O2)7O2(C10H9N3)2(H2O)]Cl·1.25C2H6O·H2O, (I), containing a tetra­nuclear [Fe43‐O)2]8+ unit, and 2‐methyl­imidazolium hexa‐μ2‐acetato‐acetatodiaqua‐μ3‐oxo‐triiron(III) chloride dihydrate, (C4H7N2)[Fe3(C2H3O2)7O(H2O)2]Cl·2H2O, (II), with a trinuclear [Fe33‐O)]7+ unit, are presented. Both structures are formed by two well differentiated entities, viz. a compact isolated cluster composed of FeIII ions coordinated to O2− and CH3CO2 anions, and an external group formed by a central Cl ion surrounded by different solvent groups to which the anion is bound through hydrogen bonding. In the case of (I), charge balance cannot be achieved within the groups, so the structure is macroscopically ionic; in the case of (II), in contrast, each group is locally neutral owing to the inter­nal compensation of charges. The trinuclear complex crystallizes with the metal cluster, chloride anion and 2‐methyl­imidazolium cation bisected by a crystallographic mirror plane.  相似文献   

4.
Reactions of cerium(III) nitrate, Ce(NO3)3?6 H2O, with different carboxylic acids, such as pivalic acid, benzoic acid, and 4‐methoxybenzoic acid, in the presence of a tridentate N,N,N‐donor ligand, diethylenetriamine (L1), under aerobic conditions yielded the corresponding cerium hexamers Ce6O8(O2CtBu)8(L1)4 ( 1 ), Ce6O8(O2CC6H5)8(L1)4 ( 2 ), and Ce6O8(O2CC6H4‐4‐OCH3)8(L1)4 ( 3 ). Hexamers 1 , 2 , and 3 contain the same octahedral CeIV6O8 core, in which all interstitial oxygen atoms are connected by μ3‐oxo bridging ligands. In contrast, treatment of the CeIV precursor (NH4)2Ce(NO3)6 (CAN) with pivalic acid and the ligand L1 under the same conditions afforded Ce6O4(OH)4(O2CtBu)12(L1)2 ( 4 ), exhibiting a deformed octahedral CeIV6O4(OH)4 core containing μ3‐oxo and μ3‐hydroxo moieties in defined positions. In contrast to the formation of 1 – 3 , the use of N‐methyldiethanolamine (L) in the reaction with Ce(NO3)3?6 H2O and pivalic acid afforded a previously reported CeIII dinuclear cluster, Ce2(O2CtBu)6L2, even in the presence of dioxygen. ESI‐MS analysis of the reaction mixture clearly indicated the importance of the ligand L1 in promoting oxidation of the CeIII aggregates, [Cen(O2CtBu)3n(L1)2], which is necessary for the formation of CeIV hexamers.  相似文献   

5.
Whereas terminal oxo complexes of transition and actinide elements are well documented, analogous lanthanide complexes have not been reported to date. Herein, we report the synthesis and structure of a cerium(IV) oxo complex, [Ce?O(LOEt)2(H2O)]?MeC(O)NH2 ( 1 ; LOEt?=[Co(η5‐C5H5){P(O)(OEt)2}3]?), featuring a short Ce?O bond (1.857(3) Å). DFT calculations indicate that the hydrogen bond to cocrystallized acetamide plays a key role in stabilizing the Ce?O moiety of 1 in the solid state. Complex 1 exhibits oxidizing and nucleophilic reactivity.  相似文献   

6.
The zinc alkoxide molecules in di‐μ3‐ethanolato‐diethyltetrakis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)tetrazinc(II), [Zn4(C2H5)2(C2H5O)2(C6H5O3)4], (I), and bis(μ3‐2‐ethoxyphenolato‐κ4O1,O2:O1:O1)bis(μ2‐2‐ethoxyphenolato‐κ3O1,O2:O1)bis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)bis(2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ2O3,O4)tetrazinc(II) toluene disolvate, [Zn4(C6H5O3)4(C8H9O2)4]·2C7H8, (II), lie on crystallographic centres of inversion. The asymmetric units of (I) and (II) contain half of the tetrameric unit and additionally one molecule of toluene for (II). The ZnII atoms are four‐ and six‐coordinated in distorted tetrahedral and octahedral geometries for (I), and six‐coordinated in a distorted octahedral environment for (II). The ZnII atoms in both compounds are arranged in a defect dicubane Zn4O6 core structure composed of two EtZnO3 tetrahedra and ZnO6 octahedra for (I), and of four ZnO6 octahedra for (II), sharing common corners. The maltolate ligands exist mostly in a μ2‐bridging mode, while the guetholate ligands prefer a higher coordination mode and act as μ3‐ and μ2‐bridges.  相似文献   

7.
The structures of five metal complexes containing the 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate dianion illustrate the remarkable coordinating versatility of this ligand and the great structural diversity of its complexes. In tetraaquaberyllium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate, [Be(H2O)4](C7H2O6), (I), the ions are linked by eight independent O—H...O hydrogen bonds to form a three‐dimensional hydrogen‐bonded framework structure. Each of the ions in hydrazinium(2+) diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)calcate, (N2H6)[Ca(C7H2O6)2(H2O)2], (II), lies on a twofold rotation axis in the space group P2/c; the anions form hydrogen‐bonded sheets which are linked into a three‐dimensional framework by the cations. In bis(μ‐4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)bis[tetraaquamanganese(II)] tetrahydrate, [Mn2(C7H2O6)2(H2O)8]·4H2O, (III), the metal ions and the organic ligands form a cyclic centrosymmetric Mn2(C7H2O6)2 unit, and these units are linked into a complex three‐dimensional framework structure containing 12 independent O—H...O hydrogen bonds. There are two independent CuII ions in tetraaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)copper(II), [Cu(C7H2O6)(H2O)4], (IV), and both lie on centres of inversion in the space group P; the metal ions and the organic ligands form a one‐dimensional coordination polymer, and the polymer chains are linked into a three‐dimensional framework containing eight independent O—H...O hydrogen bonds. Diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)cadmium monohydrate, [Cd(C7H2O6)(H2O)2]·H2O, (V), forms a three‐dimensional coordination polymer in which the organic ligand is coordinated to four different Cd sites, and this polymer is interwoven with a complex three‐dimensional framework built from O—H...O hydrogen bonds.  相似文献   

8.
The title compounds, poly­[bis(2,2′‐bi­pyridine)­bis(μ3‐hydrogen phosphato)­nitratodi‐μ2‐oxo‐dicopper(II)­vanadium dihydrate], [Cu2(VO2)(HPO4)2(NO3)(C10H8N2)2]·2H2O, (I), and poly­[bis(2,2′‐bi­pyridine)­bis(μ3‐hydrogen phosphato)­nitratodi‐μ2‐oxo‐dicopper(II)­vanadium phospho­ric acid solvate], [Cu2(VO2)(HPO4)2(NO3)(C10H8N2)2]·H3PO4, (II), were obtained by similar hydro­thermal methods but under different crystallization conditions. The trinuclear entity which serves as the basic unit in both structures presents two independent CuII ions immersed in similar square‐pyramidal N2O3 environments plus an octahedral VO6 core and is organized into a one‐dimensional polymer, which is essentially identical in the two structures. The compounds are stabilized by different solvates, viz. two crystallization water mol­ecules in (I) and a phospho­ric acid mol­ecule in (II), which provide the main structural differences through the diversity of interchain interactions in which they serve as bridges.  相似文献   

9.
Multifaceted Coordination Chemistry of Vanadium(V): Substitution, Rearrangement Reactions, and Condensation Reactions of Oxovanadium(V) Complexes of the Tripodal Oxygen Ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? The octahedral oxovanadium(V) complex [V(O)F2LOMe] of the tripodal oxygen ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? reacts with alcohols and phenol with substitution of one fluoride ligand to form alkoxo complexes [V(O)F(OR)LOMe], R = Me, Et, i‐Prop, Ph. In the presence of water, however, both fluoride ions are substituted and a complex with the composition VO2LOMe can be isolated. The crystal structure shows that the oxo‐bridged trimer [{V(O)(LOMe)O}3] was synthesized. In the presence of BF3 the fluoride ligand in the alkoxo‐complex [V(O)F(OEt)LOMe] can be exchanged for pyridine to yield [V(O)(OEt)pyLOMe]BF4. Analogous attempts to exchange the fluoride ligand for tetrahydrofuran and acetonitrile induces a rearrangement reaction that leads to the vanadium complex [V(O)(LOMe)2]BF4. The crystal structure of this compound has been determined. Its 1H and 31P‐NMR spectra show that it is a highly fluxional vanadium complex at ambient temperature in solution. The two tripodal ligands LOMe? coordinate the vanadium centre as bidentate or tridentate ligands. The exchange bidentate/tridentate becomes slow on the NMR time scale below about 200 K.  相似文献   

10.
Reacting stoichiometric amounts of 1‐(diphenylphosphino)ferrocene­carboxylic acid and [Ti(η5‐C5HMe4)22‐Me3SiC[triple‐bond]CSiMe3)] produced the title carboxyl­atotitanocene complex, [{μ‐1κ2O,O′:2(η5)‐C5H4CO2}{2(η5)‐C5H4P(C6H5)2}{1(η5)‐C5H(CH3)4}2FeIITiIII] or [FeTi(C9H13)2(C6H4O2)(C17H14P)]. The angle subtended by the Ti/O/O′ plane, where O and O′ are the donor atoms of the κ2‐carboxy­late group, and the plane of the carboxyl‐substituted ferrocene cyclo­penta­dienyl is 24.93 (6)°.  相似文献   

11.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

12.
The structure of the title compound, [Co4(C9H3O6)2(OH)2(C8H6N4)(H2O)2]·2H2O, contains three separate species, namely the μ5‐bridging C9H3O63? anion, the doubly chelating and therefore μ2‐bridging C8H6N4 ligand (bi­pyrimidine, BPM), and the dihydrated di­aqua­di­hydroxy tetranuclear cationic cluster, [Co4(OH?)2(H2O)2]6+·2H2O, which lies on a crystallographic centre of symmetry, as does the BPM ligand with, in this case, the centre of symmetry coincident with the midpoint of the C—C bond joining the six‐membered rings. Within the cation cluster, the Co atoms of one pair are five‐coordinate and those of the other six‐coordinate.  相似文献   

13.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

14.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

15.
In the title compound, [Mn(C5H2N2O4)(H2O)2]n, the MnII ion has a distorted octahedral geometry and the 4‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (Hiso2−) anion acts as a μ34‐bridging ligand. Two oxo O atoms from different Hiso2− ligands bridge two MnII ions, forming centrosymmetric dinuclear building blocks. Each dinuclear building block interacts with another four by the coordination of the oxide groups and carboxylate O atoms, producing a two‐dimensional framework in the ab plane. Hydrogen bonds further extend the two‐dimensional sheets into a three‐dimensional supramolecular framework.  相似文献   

16.
Four new molybdenum complexes [MoVIO2(L1)(Him)] ( 1 ), [MoVIO2(L1)(3‐MepzH] ( 2 ), [MoVIO2(L2)(3‐MepzH)] ( 3 ), and [(MoVIO2)2(μ‐L3)(MeOH)2] ( 4 ) were synthesized and characterized by IR, NMR, ESI‐MS, and single‐crystal structure analysis [H2L1 = 2‐(salicylideneamino)‐2‐methyl‐1‐propanol, H2L2 = 2‐(3‐methoxysalicylideneamino)‐2‐methyl‐1‐propanol, H4L3 = 1, 7‐bis(salicylidene)dihydrazide malonic acid, Him = imidazole and 3‐MepzH = 3‐methylpyrazole]. In all four structures the molybdenum atom has a distorted octahedral coordination with the three meridional donor atoms from the Schiff base di‐ or tetraanion (L1, 2)2—/(L3)4— and one oxo group occupying the sites of the equatorial plane. The other oxo group and the azole or methanol molecule occupy the apical sites. In 1—3 two centrosymmetrically related molecules form a hydrogen‐bonded pair through the (azole)N‐H···O(alkoxo) interaction. Additional crystal packing appears to be controlled mostly by π stacking between the aromatic rings of the salicyl moiety. ESI‐MS investigations reveal that the integrity of complexes 1—4 is largely retained in methanol solution. At the same time evidence is provided that di‐ to tetranuclear oligomers of formula [{MoVIO2(L)}x] and [{MoVIO2(L)}x(3‐MepzH)] with L = L1, L2, x = 2, 3, 4 are present simultaneously with 2 and 3 in methanol solution, respectively the tetranuclear species [{(MoVIO2)2(L3)}2] with 4 .  相似文献   

17.
Reactions of CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] with Mn‐containing starting materials result in seven novel polynuclear Ce or Ce/Mn complexes with pivalato (tBuCO ) and, in most cases, auxiliary N,O‐ or N,O,O‐donor ligands. With nuclearities ranging from 6–14, the compounds present aesthetically pleasing structures. Complexes [CeIV6(μ3‐O)4(μ3‐OH)4(μ‐O2CtBu)12] ( 1 ), [CeIV6MnIII4(μ4‐O)4(μ3‐O)4(O2CtBu)12(ea)4(OAc)4]?4 H2O?4 MeCN (ea?=2‐aminoethanolato; 2 ), [CeIV6MnIII8(μ4‐O)4(μ3‐O)8(pye)4(O2CtBu)18]2[CeIV6(μ3‐O)4(μ3‐OH)4(O2CtBu)10(NO3)4] [CeIII(NO3)5(H2O)]?21 MeCN (pye?=pyridine‐2‐ethanolato; 3 ), and [CeIV6CeIII2MnIII2(μ4‐O)4(μ3‐O)4(tbdea)2(O2CtBu)12(NO3)2(OAc)2]?4 CH2Cl2 (tbdea2?=2,2′‐(tert‐butylimino]bis[ethanolato]; 4 ) all contain structures based on an octahedral {CeIV6(μ3‐O)8} core, in which many of the O‐atoms are either protonated to give (μ3‐OH)? hydroxo ligands or coordinate to further metal centers (MnIII or CeIII) to give interstitial (μ4‐O)2? oxo bridges. The decanuclear complex [CeIV8CeIIIMnIII(μ4‐O)3(μ3‐O)3(μ3‐OH)2(μ‐OH)(bdea)4(O2CtBu)9.5(NO3)3.5(OAc)2]?1.5 MeCN (bdea2?=2,2′‐(butylimino]bis[ethanolato]; 5 ) contains a rather compact CeIV7 core with the CeIII and MnIII centers well‐separated from each other on the periphery. The aggregate in [CeIV4MnIV2(μ3‐O)4(bdea)2(O2CtBu)10(NO3)2]?4 MeCN ( 6 ) is based on a quasi‐planar {MnIV2CeIV4(μ3‐O)4} core made up of four edge‐sharing {MnIVCeIV2(μ3‐O)} or {CeIV3(μ3‐O)} triangles. The structure of [CeIV3MnIV4MnIII(μ4‐O)2(μ3‐O)7(O2CtBu)12(NO3)(furan)]?6 H2O ( 7 ?6 H2O) can be considered as {MnIV2CeIV2O4} and distorted {MnIV2MnIIICeIVO4} cubane units linked through a central (μ4‐O) bridge. The Ce6Mn8 equals the highest nuclearity yet reported for a heterometallic Ce/Mn aggregate. In contrast to most of the previously reported heterometallic Ce/Mn systems, which contain only CeIV and either MnIV or MnIII, some of the aggregates presented here show mixed valency, either MnIV/MnIII (see 7 ) or CeIV/CeIII (see 4 and 5 ). Interestingly, some of the compounds, including the heterovalent CeIV/CeIII 4 , could be obtained from either CeIII(NO3)3?6 H2O or (NH4)2[CeIV(NO3)6] as starting material.  相似文献   

18.
A new CeIV complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)2] ( 1 ), bearing a dianionic pentadentate ligand with an N3O2 donor set, has been prepared by treating (NH4)2Ce(NO3)6 with the sodium salt of ligand L1 . Complex 1 in the presence of TEMPO and 4 Å molecular sieves (MS4 A) has been found to serve as a catalyst for the oxidation of arylmethanols using dioxygen as an oxidant. We propose an oxidation mechanism based on the isolation and reactivity study of a trivalent cerium complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)(THF)] ( 2 ), its side‐on μ‐O2 adduct [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)]2(μ‐η22‐O2) ( 3 ), and the hydroxo‐bridged CeIV complex [Ce{NH(CH2CH2N=CHC6H2‐3,5‐(tBu)2‐2‐O)2}(NO3)]2(μ‐OH)2 ( 4 ) as key intermediates during the catalytic cycle. Complex 2 was synthesized by reduction of 1 with 2,5‐dimethyl‐1,4‐bis(trimethylsilyl)‐1,4‐diazacyclohexadiene. Bubbling O2 into a solution of 2 resulted in formation of the peroxo complex 3 . This provides the first direct evidence for cerium‐catalyzed oxidation of alcohols under an O2 atmosphere.  相似文献   

19.
Reaction of CeCl3·7H2O with Na2(oda) (oda = O(CH2CO2)22— oxydiacetate) in a 2:3 ratio gives the neutral cerium(III) complex [Ce2(oda)3(H2O)3]·9H2O ( 1 ). Treatment of a 1:3 mixture of CeCl3·7H2O and H2oda in water with 4 molar equivalents of NaOH also gives 1 but, with a larger excess of NaOH, the tri‐sodium salt Na3[Ce(oda)3]·9H2O ( 2 ) is isolated. Formation of a tri‐ammonium analogue of 2 can be achieved by neutralisation of an aqueous solution of CeCl3·7H2O and H2(oda) in a 1:3 ratio by NH4OH, giving (NH4)3[Ce(oda)3]·7H2O ( 3 ). Use of the cerium(IV) reagent (NH4)2[Ce(NO3)6] with Na2(oda) results in reduction to cerium(III) under ambient conditions and isolation of 1 . However, in the absence of light this reaction yields crystals of the novel cerium(IV) heterobimetallic [Ce(oda)3Na4(NO3)2] ( 4 ). Each of these complexes exhibit a 3‐D network structure having a common nine‐coordinate [Ce(oda)3]n— (n = 2 or 3) subunit, irrespective of the oxidation state of cerium. In 1 , six [Ce(oda)3]3— anions are connected, through bridging bidentate carboxylates, to a second Ce3+ site further coordinated by three water molecules. In contrast, the ammonium salt 2 , displays isolated [Ce(oda)3]3— anions, devoid of further carboxylate bonding, but enmeshed within a network of hydrogen‐bonded NH4+ cations and water molecules. The remarkable structure of 4 consists of infinite 2‐D sheets of [Na2(NO3)]+ pillared by [Ce(oda)3]2— units, the connectivity arising by multidentate nitrate and carboxylate bridging.  相似文献   

20.
The title compound, bis­[tris­(2,2′‐bipyridine)iron(II)] tetra­aqua­tetra‐μ4‐oxo‐penta­cosa‐μ2‐oxo‐undeca­oxo­iron(III)sodium(I)­dodeca­tungsten(VI) dihydrate, [Fe(C10H8N2)3]2[NaFeW12O40(H2O)4]·2H2O, consists of a dodeca­tungstoferrate(III) framework grafted on to an [Na(H2O)4]+ cation, two complex [Fe(2,2′‐bipy)3]2+ cations (2,2′‐bipy is 2,2′‐bipyridine) and two uncoordinated water mol­ecules per formula unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号