首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

2.
The 2,8‐di­hydroxy‐1,3,7,9‐tetra­methyl‐6,12‐di­hydro­di­pyrido[1,2‐a:1′,2′‐d]pyrazine­diyl­ium dication possesses 2/m symmetry and lies in the mirror plane together with a chloride anion and the water O atom. The dication also lies on an inversion centre, i.e. C16H20N2O22+·2Cl?·2H2O. Due to these symmetry constrictions the dication adopts an unexpected planar conformation. Molecules are linked by O—H?O and O—H?Cl hydrogen bonds to form chains, which are cross‐connected by C—H?Cl attractive interactions forming a complex three‐dimensional hydrogen‐bond network.  相似文献   

3.
The title 1,2‐diol derivative, C10H12O2, crystallizes with two independent but closely similar mol­ecules in the asymmetric unit. Only two of the four OH groups are involved in classical hydrogen bonding; the mol­ecules thereby associate to form chains parallel to the short c axis. The other two OH groups are involved in O—H⋯(C[triple‐bond]C) systems. Additionally, three of the four C[triple‐bond]C—H groups act as donors in C—H⋯O inter­actions. The 1,4‐diol derivative crystallizes with two independent half‐mol­ecules of the diol (each associated with an inversion centre) and one water mol­ecule in the asymmetric unit, C12H16O2·H2O. Both OH groups and one water H atom act as classical hydrogen‐bond donors, leading to layers parallel to the ac plane. The second water H atom is involved in a three‐centre contact to two C[triple‐bond]C bonds. One acetyl­enic H atom makes a very short `weak' hydrogen bond to a hydr­oxy O atom, and the other is part of a three‐centre system in which the acceptors are a hydroxy O atom and a C[triple‐bond]C bond.  相似文献   

4.
The title compound, C14H11NO4, exists in the solid phase in the zwitterionic form, 2‐{[(4‐carboxy‐3‐hydroxyphenyl)iminiumyl]methyl}phenolate, with the H atom from the phenol group on the 2‐hydroxybenzylidene ring transferred to the imine N atom, resulting in a strong intramolecular N—H...O hydrogen bond between the iminium H atom and the phenolate O atom, forming a six‐membered hydrogen‐bonded ring. In addition, there is an intramolecular O—H...O hydrogen bond between the carboxylic acid group and the adjacent hydroxy group of the other ring, and an intermolecular C—H...O contact involving the phenol group and the C—H group adjacent to the imine bond, connecting the molecules into a two‐dimensional network in the (10) plane. π–π stacking interactions result in a three‐dimensional network. This study is important because it provides crystallographic evidence, supported by IR data, for the iminium zwitterionic form of Schiff bases.<!?tpb=12pt>  相似文献   

5.
The title compound, C21H18O2, crystallized in the centrosymmetric space group P21/n with one mol­ecule in the asymmetric unit. There is a single hydrogen bond, with an Odonor?Oacceptor distance of 2.624 (2) Å, which forms a cyclic dimer about a center of symmetry. The carboxyl group O atoms are ordered, while the carboxyl‐H atom is disordered. A single leading intermolecular C—H?O interaction has an H?O distance of 2.68 Å and a C—H?O angle of 178°; this interaction forms chains. Taken together with the hydrogen bond, it generates chains and rings. Structural comparisons are made with trans‐cinnamic acid and with 4‐methyl‐trans‐cinnamic acid.  相似文献   

6.
The crystal structures of two solid phases of the title compound, C4H5N2+·C6HCl2O4·H2O, have been determined at 225 and 120 K. In the high‐temperature phase, stable above 198 K, the transition temperature of which has been determined by 35Cl nuclear quadrupole resonance and differential thermal analysis measurements, the three components are held together by O—H...O, N...H...O, C—H...O and C—H...Cl hydrogen bonds, forming a centrosymmetric 2+2+2 aggregate. In the N...H...O hydrogen bond formed between the pyrimidin‐1‐ium cation and the water molecule, the H atom is disordered over two positions, resulting in two states, viz. pyrimidin‐1‐ium–water and pyrimidine–oxonium. In the low‐temperature phase, the title compound crystallizes in the same monoclinic space group and has a similar molecular packing, but the 2+2+2 aggregate loses the centrosymmetry, resulting in a doubling of the unit cell and two crystallographically independent molecules for each component in the asymmetric unit. The H atom in one N...H...O hydrogen bond between the pyrimidin‐1‐ium cation and the water molecule is disordered, while the H atom in the other hydrogen bond is found to be ordered at the N‐atom site with a long N—H distance [1.10 (3) Å].  相似文献   

7.
The first example of cobalt‐catalyzed oxidative C?H/C?H cross‐coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2?4 H2O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C?H bond activation pathway that the well‐described oxidative C?H/C?H cross‐coupling reactions between two heteroarenes typically undergo.  相似文献   

8.
In the five‐membered ring in the title compound, (2‐amino­ethoxy)­bis(2‐thienyl)­boron, C10H12BNOS2, the B atom is four‐coordinate with dimensions N—B 1.654 (3), O—B 1.479 (3), and C—B 1.606 (3) and 1.609 (3) Å. An intermolecular hydrogen bond between an amino H atom and the ethoxy O atom links the mol­ecules into infinite chains along the a axis. Only one of the two amino H atoms is involved in hydrogen bonding because there is only the one acceptor atom, the ethoxy O atom, and the molecular geometry precludes formation of a second hydrogen bond by the second amino H atom.  相似文献   

9.
In 3,4‐di‐2‐pyridyl‐1,2,5‐oxadiazole (dpo), C12H8N4O, each mol­ecule resides on a twofold axis and inter­acts with eight neighbours via four C—H⋯N and four C—H⋯O inter­actions to generate a three‐dimensional hydrogen‐bonded architecture. In the perchlorate analogue, 2‐[3‐(2‐pyrid­yl)‐1,2,5‐oxadiazol‐4‐yl]pyridinium perchlorate, C12H9N4O+·ClO4 or [Hdpo]ClO4, the [Hdpo]+ cation is bisected by a crystallographic mirror plane, and the additional H atom in the cation is shared by the two pyridyl N atoms to form a symmetrical intra­molecular N⋯H⋯N hydrogen bond. The cations and perchlorate anions are linked through C—H⋯O hydrogen bonds and π–π stacking inter­actions to form one‐dimensional tubes along the b‐axis direction.  相似文献   

10.
In the title 1/2/2 adduct, C4H12N22+·2C6H3N2O5?·2H2O, the dication lies on a crystallographic inversion centre and the asymmetric unit also has one anion and one water mol­ecule in general positions. The 2,4‐di­nitro­phenolate anions and the water mol­ecules are linked by two O—H?O and two C—H?O hydrogen bonds to form molecular ribbons, which extend along the b direction. The piperazine dication acts as a donor for bifurcated N—H?O hydrogen bonds with the phenolate O atom and with the O atom of the o‐nitro group. Six symmetry‐related molecular ribbons are linked to a piperazine dication by N—H?O and C—H?O hydrogen bonds.  相似文献   

11.
The crystal structure of the title compound, C16H23N3O4·CH3CN, was refined using a multipolar atom model transferred from an experimental electron‐density database. The refinement showed some improvement in crystallographic statistical indices compared with the independent atom model. The triazepane ring adopts a twist‐boat conformation. In the crystal structure, the molecule forms intermolecular contacts with 14 different neighbours. There are two N—H...O and one C—H...O intermolecular hydrogen bond.  相似文献   

12.
The title compound [systematic name: 7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐3,7‐dihydro‐4H‐pyrrolo[2,3‐d]pyrimidin‐4‐one], C11H13N3O4, represents an acid‐stable derivative of 2′‐deoxyinosine. It exhibits an anti glycosylic bond conformation, with a χ torsion angle of 113.30 (15)°. The furanose moiety adopts an S‐type sugar pucker 4T3, with P = 221.8 (1)° and τm = 40.4 (1)°. The conformation at the exocyclic C4′—C5′ bond of the furanose ring is ap (trans), with γ = 167.14 (10)°. The extended structure forms a three‐dimensional hydrogen‐bond network involving O—H...O, N—H...O and C—H...O hydrogen bonds. The title compound forms an uncommon hydrogen bond between a CH group of the pyrrole system and the ring O atom of the sugar moiety of a neighbouring molecule.  相似文献   

13.
The Schiff base enaminones (3Z)‐4‐(5‐ethylsulfonyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C13H17NO4S, (I), and (3Z)‐4‐(5‐tert‐butyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C15H21NO2, (II), were studied by X‐ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one‐dimensional hydrogen‐bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one‐dimensional hydrogen‐bonded chain. The DFT‐calculated structures [in vacuo, B3LYP/6‐311G(d,p) level] for the keto tautomers compare favourably with the X‐ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1 lower in energy than the enol tautomers for (I) and (II), respectively.  相似文献   

14.
In the title compound, C11H21N2O5P, one of the two carbazate N atoms is involved in the C=N double bond and the H atom of the second N atom is engaged in an intramolecular hydrogen bond with an O atom from the dimethylphosphorin‐2‐yl group, which is in an uncommon cis position with respect to the carbamate group. The cohesion of the crystal structure is also reinforced by weak intermolecular hydrogen bonds. Density functional theory (DFT) calculations at the B3LYP/6‐311++g(2d,2p) level revealed the lowest energy structure to have a Z configuration at the C=N bond, which is consistent with the configuration found in the X‐ray crystal structure, as well as a less stable E counterpart which lies 2.0 kcal mol−1 higher in potential energy. Correlations between the experimental and computational studies are discussed.  相似文献   

15.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

16.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

17.
The title compound, C8H5NO, has an intra­molecular O⋯CN contact involving an O⋯C distance of 2.797 (2) Å and a C—C—N bond angle of 174.5 (2)°, both indicative of a weak nucleophilic attack of the aldehyde O atom on the electrophilic C atom in the nitrile group. Calculations at the B3LYP density functional level using the 6–31G* basis set support this inter­pretation; natural bond‐order analysis indicates an nO1→π delocalization energy of 6.3 kJ mol−1. Similar results were obtained from density functional calculations on three related mol­ecules. The 2‐formyl­benzonitrile mol­ecules pack in sheets as a consequence of C—H⋯N and C—H⋯O hydrogen bonds.  相似文献   

18.
The title salt, C15H18NO2+·Br·H2O, is an analogue of the antidepressant drug agomelatine. The cation is protonated at the carbonyl O atom of its amide group. The side chain at the 1‐position adopts an extended conformation, with all non‐H atoms lying in the same plane as the naphthalene ring. This is in contrast with the crystal structures known for three agomelatine polymorphs, and also with two known cocrystals containing agomelatine. The structure displays three types of hydrogen bond, namely C=O—H...O, N—H...Br and O—H...Br, which define a two‐dimensional network parallel to the (100) plane. The naphthalene rings interdigitate in a `zipper‐like' fashion between these hydrogen‐bonded networks, forming an offset arrangement. Direct face‐to‐face π–π contacts between naphthalene rings are not present in the structure.  相似文献   

19.
The title compound, 2‐hydroxy­phenyl 5‐(pyrrol‐2‐yl)‐3H‐pyrrolizin‐6‐yl ketone, C18H14N2O2, was isolated from the base‐catalyzed 1:2 condensation of 2‐hydroxy­aceto­phenone with pyrrole‐2‐carbaldehyde. The pyrrole N—H and hydroxy­benzoyl O—H groups are hydrogen bonded to the benzoyl O atom. The allyl­ic C=C double bond of the 3H‐pyrrolizine system is located between ring positions 1 and 2, the C atom at position 3 (adjacent to the N atom) being single bonded.  相似文献   

20.
The title compound, C19H21N3O4S, crystallizes in the space group P2/c with two molecules in the asymmetric unit. The conformation of both molecules is very similar and is mainly determined by an intramolecular N—H...O hydrogen bond between a urea N atom and a sulfonyl O atom. The O and second N atom of the urea groups are involved in dimer formation via N—H...O hydrogen bonds. The intramolecular hydrogen‐bonding motif and conformation of the C—SO2—NH(C=O)—NH—C fragment are explored and compared using the Cambridge Structural Database and theoretical calculations. The crystal packing is characterized by π–π stacking between the 5‐cyanobenzene rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号