首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《Nuclear Physics A》1996,609(4):537-561
We study some bulk thermodynamical characteristics, meson properties and the nucleon as a baryon-number-one soliton in hot quark matter in the NJL model as well as in hot nucleon matter in a hybrid NJL model in which the Dirac sea of quarks is combined with a Fermi sea of nucleons. In both cases, working in the mean-field approximation, we find a chiral phase transition from the Goldstone to the Wigner phase. At finite density the chiral order parameter and the constituent quark mass have a non-monotonic temperature dependence — at finite temperatures not close to the critical one they are less affected than in cold matter. Whereas quark matter is rather soft against thermal fluctuations and the corresponding chiral phase transition is smooth, nucleon matter is much stiffer and the chiral phase transition is very sharp. The thermodynamical variables show large discontinuities which is an indication for a first-order phase transition. We solve the B = 1 solitonic sector of the NJL model in the presence of external hot quark and nucleon media. In the hot medium at intermediate temperature the soliton is more bound and less swelled than in the case of cold matter. At some critical temperature, which for nucleon matter coincides with the critical temperature for the chiral phase transition, we find no more a localized solution. According to this model scenario one should expect a sharp phase transition from nucleon to quark matter.  相似文献   

2.
We propose a wide universality class of gapless superfluids, and analyze a limit that might be realized in quark matter at intermediate densities. In the breached pairing color superconducting phase heavy s quarks, with a small Fermi surface, pair with light u or d quarks. The ground state has a superfluid and a normal Fermi component simultaneously. We expect a second-order phase transition, as a function of increasing density, from the breached pairing phase to the conventional color-flavor locked phase.  相似文献   

3.
QCD at a finite isospin chemical potential μ I is studied. This theory has no fermion-sign problem and can be simulated on a lattice by using present-day techniques. We solve this theory analytically in two limits: low μ I, where chiral perturbation theory is applicable, and asymptotically high μ I, where perturbative QCD is at work. At a low isospin density, the ground state is a superfluid pion condensate. At a very high density, it is a Fermi liquid with Cooper pairing. The pairs carry the same quantum numbers as the pions. Motivated by this observation, we put forward a conjecture that the transition from hadron to quark matter is smooth. The conjecture passes several nontrivial tests. Our results imply a nontrivial phase diagram in the space of the temperature and chemical potentials of isospin and baryon number. At asymptotically large values of μ I and small values of the baryon chemical potential, the ground state is in a phase similar to the Fulde-Ferrell-Larkin-Ovchinnikov phase. It is characterized by a spatially modulated superfluid order parameter 〈ūγ 5 d〉 and may be the asymptotic limit of the inhomogeneous pion-condensation phase advocated by Migdal and others.  相似文献   

4.
QCD at finite isospin chemical potential mu(I) has no fermion sign problem and can be studied on the lattice. We solve this theory analytically in two limits: at low mu(I), where chiral perturbation theory is applicable, and at asymptotically high mu(I), where perturbative QCD works. At low isospin density the ground state is a pion condensate, whereas at high density it is a Fermi liquid with Cooper pairing. The pairs carry the same quantum numbers as the pion. This leads us to conjecture that the transition from hadron to quark matter is smooth, which passes several tests. Our results imply a nontrivial phase diagram in the space of temperature and chemical potentials of isospin and baryon number.  相似文献   

5.
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.  相似文献   

6.
Using an exact Bethe ansatz solution, we rigorously study excitation spectra of the spin-1/2 Fermi gas (called Yang–Gaudin model) with an attractive interaction. Elementary excitations of this model involve particle-hole excitation, hole excitation and adding particles in the Fermi seas of pairs and unpaired fermions. The gapped magnon excitations in the spin sector show a ferromagnetic coupling to the Fermi sea of the single fermions. By numerically and analytically solving the Bethe ansatz equations and the thermodynamic Bethe ansatz equations of this model, we obtain excitation energies for various polarizations in the phase of the Fulde–Ferrell–Larkin–Ovchinnikov-like state. For a small momentum (long-wavelength limit) and in the strong interaction regime, we analytically obtained their linear dispersions with curvature corrections, effective masses as well as velocities in particle-hole excitations of pairs and unpaired fermions. Such a type of particle-hole excitations display a novel separation of collective motions of bosonic modes within paired and unpaired fermions. Finally, we also discuss magnon excitations in the spin sector and the application of Bragg spectroscopy for testing such separated charge excitation modes of pairs and single fermions.  相似文献   

7.
We examine baryonic matter at a quark chemical potential of the order of the confinement scale μ(q)~Λ(QCD). In this regime, quarks are supposed to be confined but baryons are close to the "tightly packed limit" where they nearly overlap in configuration space. We show that this system will exhibit a percolation phase transition when varied in the number of colors N(c): at high N(c), large distance correlations at the quark level are possible even if the quarks are essentially confined. At low N(c), this does not happen. We discuss the relevance of this for dense nuclear matter, and argue that our results suggest a new "phase transition," varying N(c) at constant μ(q).  相似文献   

8.
The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (“ISB”). For a reasonable strength for the effective four-Fermi current–current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the “ISB” phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust.  相似文献   

9.
The spectrum of meson and diquark excitations of dense quark matter is considered in the framework of the Nambu–Jona-Lasinio model with three types of massless quarks in the presence of a quark number chemical potential μ. We investigate the effective action of meson and diquark fields both at sufficiently large values of μ>μc≈  330 MeV, where the color–flavor locked (CFL) phase is realized, and in the chirally broken phase of quark matter (μ<μc). In the latter case all nine pseudoscalar mesons are Nambu–Goldstone (NG) bosons, whereas the mass of the scalar meson nonet is twice the dynamical quark mass. In the chirally broken phase the pseudoscalar diquarks are not allowed to exist as stable particles, but the scalar diquarks might be stable only at a rather strong interaction in the diquark channel. In the case of the CFL phase, all NG bosons of the model are realized as scalar and pseudoscalar diquarks. Moreover, it turns out that massive diquark excitations are unstable for this phase. In particular, for the scalar and pseudoscalar octets of diquark resonances a mass value around 230 MeV was found numerically. In contrast, mesons are stable particles in the CFL phase. Their masses lie in the interval 400–500 MeV for not too large values of μ>μc. PACS 11.30.Qc; 12.38.-t; 12.39.-x  相似文献   

10.
We explore the formation of diquark bound states and their Bose–Einstein condensation (BEC) in the phase diagram of three-flavor quark matter at nonzero temperature, T, and quark chemical potential, μ  . Using a quark model with a four-fermion interaction, we identify diquark excitations as poles of the microscopically computed diquark propagator. The quark masses are obtained by solving a dynamical equation for the chiral condensate and are found to determine the stability of the diquark excitations. The stability of diquark excitations is investigated in the T–μTμ plane for different values of the diquark coupling strength. We find that diquark bound states appear at small quark chemical potentials and at intermediate coupling strengths. Bose–Einstein condensation of non-strange diquark states occurs when the attractive interaction between quarks is sufficiently strong.  相似文献   

11.
The ground state of three flavor quark matter at asymptotically large density is believed to be the color-flavor-locked (CFL) phase. At nonasymptotic density the effect of the nonzero strange quark mass cannot be neglected. If the strange quark mass exceeds m(s) approximately m(u)(1/3)delta(2/3), the CFL state becomes unstable toward the formation of a neutral kaon condensate. Recently, several authors discovered that for m(s) approximately (2deltap(F))(1/2) the CFL state contains gapless fermions, and that the gapless modes lead to an instability in current-current correlation functions. Using an effective theory of the CFL state, we demonstrate that this instability can be resolved by the formation of a meson supercurrent, analogous to Migdal's p-wave pion condensate. This state has a nonzero meson current that is canceled by a backflow of gapless fermions.  相似文献   

12.
《Physics letters. [Part B]》2005,601(1-2):16-21
In this Letter we construct analytically a LOFF color superconducting state that is both color and charge neutral using the weak coupling approximation. We demonstrate that this state is free from chromomagnetic instabilities. Its relevance to the realistic quark matter at moderately high baryon density is discussed.  相似文献   

13.
In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at finite chemical potential. It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant. From this a criterion for the phase transition between the Nambu and the Wigner phases is obtained. This general method is applied to two specific cases: the free quark theory and QCD with a model dressed quark propagator having confinement features. In the first case, the standard Fermi distribution at T = 0 is reproduced. In the second case, we apply the conclusion in previous works to obtain the dressed quark propagator at finite chemical potential and find the unphysical result that the baryon number density vanishes for all values of chemical potential. The reason for this result is discussed.  相似文献   

14.
A relativistic extension of the Landau Fermi liquid theory, applicable to the study of high density matter, is developed. Consequences of Lorentz invariance in the theory are explored. The formalism is illustrated by a study of relativistic Fermi systems weakly interacting via scalar and vector meson exchange. Second order exchange energies for both massless scalar and massless vector interactions are calculated in terms of Landau parameters on the Fermi surface. Zero sound and “color-plasma oscillations” are studied in quark matter with SU(3) color gluon coupling.  相似文献   

15.
We study the hadron-quark phase transition in a molecular dynamics (MD) of quark degrees of freedom. The hadron state at low density and temperature, and the deconfined quark state at high density and temperature are observed in our model. We investigate the equations of state and draw the phase diagram at wide baryon density and temperature range. We also discuss the transport property, e.g. viscosity, of $q\bar q$ matter. It is found that the ratio of the shear viscosity to the entropy density is less than one for quark matter.  相似文献   

16.
We study the static scalar susceptibility of the nuclear medium, i.e., the change of the quark condensate for a small modification of the quark mass. In the linear sigma model it is linked to the in-medium sigma propagator and its magnitude increases due to the mixing with the softer modes of the nucleon-hole excitations. We show that the pseudoscalar susceptibility, which is large in the vacuum, owing to the smallness of the pion mass, follows the density evolution of the quark condensate and thus decreases. At normal nuclear matter density the two susceptibilities become much closer, a partial chiral symmetry restoration effect as they become equal when the full restoration is achieved. Received: 20 July 2002 / Accepted: 14 September 2002 / Published online: 21 January 2003 RID="a" ID="a"e-mail: chanfray@ipnl.in2p3.fr Communicated by A. Molinari  相似文献   

17.
Manohar 和Georgi 提出了一种基于QCD的有效组份夸克模型(MG 模型),用于解释唯象夸克模型成功的原因。最近Weinberg 指出,该模型在大Nc (夸克颜色数目) 极限下是可重整化的。从QCD 配分泛函出发,对MG模型的有效理论进行了分析,并通过将胶子-夸克耦合做唯象的Skyrme 作用近似,提出了核子的一种有效手征夸克模型,它包括了夸克和pion 云以及pion 云的非线性自耦合。利用有效手征夸克模型计算的核子静态性质的结果与实验值相符很好。Manohar-Georgi proposed an effective constituent quark model(MG model) based on QCD, explaining the success of quark models. Recently, Weinberg has shown that the MG model is renormalizable in the large Nc limit of the color number. In this paper, we present a functional QCD analysis of the MG model and propose an effective chiral quark model of the nucleons, which includes the nonlinear interaction between quark-pions and pions among themselves byapproximating the quark-gluon coupling with the phenomenological Skyrme interaction. The calculation for the nucleon static properties is in good agreement with experimental data.  相似文献   

18.
19.
In bilayer quantum Hall systems at filling fractions near nu=1/2+1/2, as the spacing d between the layers is continuously decreased, intralayer correlations must be replaced by interlayer correlations, and the composite fermion (CF) Fermi seas at large d must eventually be replaced by a composite boson (CB) condensate or "111 state" at small d. We propose a scenario where CBs and CFs coexist in two interpenetrating fluids in the transition. Trial wave functions describing these mixed CB-CF states compare very favorably with exact diagonalization results. A Chern-Simons transport theory is constructed that is compatible with experiment.  相似文献   

20.
We present a three–dimensional model for quark matter with a density dependent quark–quark (confining) potential, which allows to describe a sort of deconfinement transition as the system evolves from a low density assembly of bound structures to a high density free Fermi gas of quarks. We consider different confining potentials, some of which successfully utilized in hadron spectroscopy. We find that a proper treatment of the many–body correlations induced by the medium is essential to disentangle the different nature of the two (hadronic and deconfined) phases of the system. For this purpose the ground state energy per particle and the pair correlation function are investigated. Received: 10 June 1998 / Revised version: 24 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号