首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Naphtho[2,1‐b]furan‐2‐yl)(8‐phenylpyrazolo[5,1‐c][1,2,4]triazin‐3‐yl)methanone, ([1,2,4]triazolo[3,4‐c][1,2,4]triazin‐6‐yl)(naphtho[2,1‐b]furan‐2‐yl)methanone, benzo[4,5]imidazo[2,1‐c][1,2,4]triazin‐3‐yl‐naphtho[2,1‐b]furan‐2‐yl‐methanone, 5‐(naphtho[2,1‐b]furan‐2‐yl)pyrazolo[1,5‐a]pyrimidine, 7‐(naphtho[2,1‐b]furan‐2‐yl)‐[1,2,4]triazolo[4,3‐a]pyrimidine, 2‐naphtho[2,1‐b]furan‐2‐yl‐benzo[4,5]imidazo[1,2‐a]pyrimidine, pyridine, and pyrazole derivatives are synthesized from sodium salt of 5‐hydroxy‐1‐naphtho[2,1‐b]furan‐2‐ylpropenone and various reagents. The newly synthesized compounds were elucidated by elemental analysis, spectral data, chemical transformation, and alternative synthetic route whenever possible. J. Heterocyclic Chem., (2012).  相似文献   

2.
Treatment of arylidene malononitriles 2A – C with 1‐cyanomethylisoquinoline 1 afforded 4‐amino‐2‐arylpyrido[2,1‐a ]isoquinoline‐1,3‐dicarbonitrile derivatives 5A – C , which converted to formimidates 6A – C via reaction with triethylorthoformate. Treatment of the latter compounds with hydrazine hydrate gave the corresponding amino–imino compounds 7A – C , which underwent Dimroth rearrangement to afford 13‐aryl‐1‐hydrazinylpyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinoline‐12‐carbonitrile 8A – C . The latter reacted with aldehyde to give 9a – i . Oxidative cyclization of the latter compounds 9a – i gave [1,2,4]triazolo[4″,3″:1′,6′]‐pyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinolines 10a , d , g . Such compounds isomerized to the thermodynamically more stable isomers [1,2,4]triazolo[1″,5″:1′,6′]pyrimido[5′,4′:5,6]‐pyrido[2,1‐a ]isoquinolines 11a , d , g . Antimicrobial activities for some compounds were studied.  相似文献   

3.
Formylation of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine 1a using Vilsmeier–Haack conditions yields 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylcarbaldehyde 3a . 5,7‐Diaryl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidines 1b , 1c in this reaction apart from formylation undergo recyclization into 5‐aryl‐1,2,4‐triazolo[1,5‐a]pyrimidin‐6‐ylmethane derivatives 4b , 4c , 5b , 5c , and 6 . The structure of the synthesized compounds was determined on the basis of NMR, IR, and MS spectroscopic data and confirmed by the X‐ray analysis of the 6‐(ethoxy‐phenyl‐methyl)‐5‐phenyl‐[1,2,4]triazolo[1,5‐a]pyrimidine 6 , 5‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[1,5‐a]pyrimidine 11 , and 7‐phenyl‐6‐(1‐phenyl‐vinyl)‐[1,2,4]triazolo[4,3‐a]pyrimidine 12 .  相似文献   

4.
This paper describes the preparation of some pyrazolo[1,5‐a]‐, 1,2,4‐triazolo[1,5‐a]‐ and imidazo[1,2‐a]‐pyrimidines substituted on the pyrimidine moiety by a 4‐[(N‐acetyl‐N‐ethyl)amino]phenyl group. A new synthesis of related benzo[h]pyrazolo[1,5‐a]‐, benzo[h]pyrazolo[5,1‐b]‐ and benzo[h]1,2,4‐triazolo[1,5‐a]‐quinazolines is also reported.  相似文献   

5.
The reaction of 5,7‐diphenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) with α,β‐unsaturated carbonyl compounds 2a‐f led to the formation of the alkylated heterocycles 3a‐f (Figure 1). However, the reaction of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 5 ) with 2a‐c yielded under the same conditions the triazolo[5,1‐b]quinazolines 6a‐c (Figure 3). In this case, the alkylation is followed by a cyclocondensation. The structure elucidation of the products is based on ir, ms, 1H and 13C nmr measurements and on an X‐ray diffraction study.  相似文献   

6.
Chemical transformations of chromone‐3‐carbonitrile ( 1 ) with some substituted hydrazines, namely, thiosemicarbazide, S‐methyl/benzyldithiocarbazate, 7‐chloro‐4‐hydrazinoquinoline, and 3‐hydrazino‐5,6‐diphenyl‐1,2,4‐triazine, led to substituted pyrazoles 2 , 5 – 8 . Ring opening of carbonitrile 1 followed by recyclization with 3‐amino‐1,2,4‐triazole and 2‐aminobenzimidazole gave triazolo[1,5‐a]pyrimidine 9 and pyrimido[1,2‐a]benzimidazole 10 , respectively. Treatment of carbonitrile 1 with some heterocyclic amines produced 2‐amino‐3‐substituted‐chromones 11 and 12 . The novel 3‐hydroxychromeno[4,3‐b]pyrazolo[4,3‐e]pyridin‐5(1H)‐one ( 13 ) was efficiently synthesized from the ring conversion of carbonitrile 1 with cyanoacetohydrazide. A mixture of chromeno[2,3‐b]naphthyridine 14 and chromeno[4,3‐b]pyridine 15 was obtained from base catalyzed transformation of carbonitrile 1 with malononitrile dimer. A diversity of novel annulated chromeno[2,3‐b]pyridines 16 – 22 was also synthesized. Chromeno[2,3‐b]pyrrole‐2‐carboxylate 23 was obtained from the reaction of carbonitrile 1 with ethyl chloroacetate. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

7.
A method for the preparation of heterocyclic analogs of α‐aminoadipic acid and its esters based on the imidazo[2,1‐b][1,3]thiazole ring system was developed. In this method, free‐radical bromination of ethyl 6‐methylimidazo[2,1‐b][1,3]thiazole‐5‐carboxylate with NBS afforded a versatile building block, ethyl 6‐bromomethylimidazo[2,1‐b][1,3]thiazole‐5‐carboxylate. Coupling of ethyl 6‐bromomethylimidazo[2,1‐b][1,3]thiazole‐5‐carboxylate with Schöllkopf's chiral auxiliary followed by acidic hydrolysis generated ethyl 6‐[(2S)‐2‐amino‐3‐methoxy‐3‐oxopropyl]imidazo[2,1‐b][1,3]thiazole‐5‐carboxylate. A similar procedure using diethyl (Boc‐amino)malonate yielded racemic 2‐amino‐3‐[(5‐ethoxycarbonyl)imidazo[2,1‐b][1,3]thiazol‐6‐yl]propanoic acid.  相似文献   

8.
Novel [1,2,4]triazole derivatives were synthesized via various synthetic pathways. Among which were different substituted [1,2,4]triazole analogues that were synthesized, in addition to various fused [1,2,4]triazolo[1,5‐a]pyrimidine derivatives, [1,2,4]triazolo[1,5‐a][1,3,5]triazines, and [1,2,4]triazolo[5,1‐c][1,2,4]triazines. Besides, benzo[h][1,2,4]triazolo[5,1‐b]quinazolines, [1,2,4]triazolo‐[5,1‐b]quinazoline, [1,2,4]triazolo[1,5‐a]quinazoline and [1,2,4]triazolo[5,1‐d][1,2,3,5]tetrazine derivatives were also synthesized. The newly synthesized compounds were evaluated for their in vitro anticancer activity against liver cancer HepG2 and breast cancer MCF7 cell lines compared with the reference drug doxorubicin. Compounds 4 , 7 , 15 , 17 , 28 , 34 , and 47 were found to exert promising anticancer activity against HepG2 cell line showing IC50 values ranging from 17.69 to 25.4 μM/L, while compounds 7 , 14a , 17 , 28 , and 34 showed significant activity against MCF7 cell line with IC50 values ranging from 17.69 to 27.09 μM/L.  相似文献   

9.
The pseudo‐Michael reaction of 2‐hydrazinylidene‐1‐arylimidazolidines with diethyl ethoxymethylenemalonate (DEEM) was investigated. The reaction yields the chain adduct, namely diethyl{[2‐(1‐arylimidazolidin‐2‐ylidene)hydrazinyl]methylidene}propanedioates. This is contrary to the pseudo‐Michael reaction of DEEM with 1‐aryl‐4,5‐dihydro‐1H‐imidazol‐2‐amines that does not allow isolation of chain derivatives and leads to cyclic imidazo[1,2‐a]pyrimidine derivatives while even at thermodynamic control. At first cyclization of diethyl{[2‐(1‐arylimidazolidin‐2‐ylidene)hydrazinyl]methylidene}propanedioates leads to ethyl 1‐aryl‐5(1H,8H)oxo‐2,3‐dihydro‐imidazo[2,1‐c][1,2,4]triazepine‐6‐carboxylates. 1,5‐Sigmatropic shift, following the cyclization, caused isomerization of 5(1H,8H)oxo‐2,3‐dihydro‐imidazo[2,1‐c][1,2,4]triazepine‐6‐carboxylates to ethyl 1‐aryl‐5(1H)hydroxy‐2,3‐dihydroimidazo[2,1‐c][1,2,4]triazepine‐6‐carboxylates. Presence of both isomers in the reaction product was detected in the NMR spectra. The structure of all the compounds was confirmed with spectroscopic studies (1H NMR and MS). The structure of diethyl{[2‐(1‐phenylimidazolidin‐2‐ylidene)hydrazinyl]methylidene}propanedioate was also confirmed by X‐ray crystallography. In the addition reaction, thermodynamics and HOMO–LUMO orbitals of the reactants were studied by using quantum chemical calculations.  相似文献   

10.
The crystal structures of four new chiral [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines are described, namely, ethyl 5′‐benzoyl‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O3S, ethyl 5′‐(4‐methoxybenzoyl)‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C20H24N4O4S, ethyl 6,6‐dimethyl‐5‐(4‐methylbenzoyl)‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C17H20N4O3S, and ethyl 5‐benzoyl‐6‐(4‐methoxyphenyl)‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C21H20N4O4S. The crystallographic data and cell activities of these four compounds and of the structures of three previously reported similar compounds, namely, ethyl 5′‐(4‐methylbenzoyl)‐5′H,7′H‐spiro[cyclopentane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O3S, ethyl 5′‐(4‐methoxybenzoyl)‐5′H,7′H‐spiro[cyclopentane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate, C19H22N4O4S, and ethyl 6‐methyl‐5‐(4‐methylbenzoyl)‐6‐phenyl‐6,7‐dihydro‐5H‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine‐3‐carboxylate, C22H22N4O3S, are contrasted and compared. For both crystallization and an MTT assay, racemic mixtures of the corresponding [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines were used. The main manner of molecular packing in these compounds is the organization of either enantiomeric pairs or dimers. In both cases, the formation of two three‐centre hydrogen bonds can be detected resulting from intramolecular N—H…O and intermolecular N—H…O or N—H…N interactions. Molecules of different enantiomeric forms can also form chains through N—H…O hydrogen bonds or form layers between which only weak hydrophobic contacts exist. Unlike other [1,2,3]triazolo[5,1‐b][1,3,4]thiadiazines, ethyl 5′‐benzoyl‐5′H,7′H‐spiro[cyclohexane‐1,6′‐[1,2,3]triazolo[5,1‐b][1,3,4]thiadiazine]‐3′‐carboxylate contains molecules of only the (R)‐enantiomer; moreover, the N—H group does not participate in any significant intermolecular interactions. Molecular mechanics methods (force field OPLS3e) and the DFT B3LYP/6‐31G+(d,p) method show that the compound forming enantiomeric pairs via weak N—H…N hydrogen bonds is subject to greater distortion of the geometry under the influence of the intermolecular interactions in the crystal. For intramolecular N—H…O and S…O interactions, an analysis of the noncovalent interactions (NCIs) was carried out. The cellular activities of the compounds were tested by evaluating their antiproliferative effect against two normal human cell lines and two cancer cell lines in terms of half‐maximum inhibitory concentration (IC50). Some derivatives have been found to be very effective in inhibiting the growth of Hela cells at nanomolar and submicromolar concentrations with minimal cytotoxicity in relation to normal cells.  相似文献   

11.
Dedicated to Dr. János Császár on the occasion of his 70th birthday Ring transformation of 2‐cyanoimido‐3‐methyl‐1,3‐oxazolidine ( 10 ) yielded 5‐amino‐3‐[N‐(2‐hydrox‐yethyl)‐N‐methyl]amino‐1H‐1,2,4‐triazole ( 6 ) that was ring closed with different β‐keto esters to 2‐[N‐(2‐hydroxyethyl)‐N‐methyl]amino‐1,2,4‐triazolo[1,5‐a]pyrimidinones ( 4 ). Cyclisation of derivatives 4 led to imidazo[2′,1′:3,4][1,2,4]triazolo[1,5‐a]pyrimidines ( 2 ) and imidazo[1′,2′:2,3][1,2,4]triazolo[1,5‐a]pyrim‐idines ( 3 ) representing 10 novel ring systems. Besides spectroscopical evidence of structure of derivatives 2 and 3 X‐ray diffraction analysis of derivative 2b was also performed.  相似文献   

12.
Synthesis of {3‐[1‐(ethoxycarbonyl)‐[1,2,4]triazolo[4,3‐a]quinoxalin‐4‐yl]‐1‐phenyl‐1H‐pyrazol‐5‐yl}methyl ethyl oxalate ( 2 ), ethyl 4‐[5‐(acetoxymethyl)‐1‐phenyl‐1H‐pyrazol‐3‐yl]‐[1,2,4]triazolo[4,3‐a]quioxaline‐1‐carboxylate ( 4 ), [4‐halo‐1‐phenyl‐3‐(1‐phenyl‐[1,2,4]triazolo[4,3‐a]quioxalin‐4‐yl)‐1H‐pyrazol‐5‐yl]methyl acetate ( 11 ), {4‐halo‐3‐[1‐methyl‐[1,2,4]triazolo[4,3‐a]quinoxalin‐4‐yl]‐1‐phenyl‐1H‐pyraz‐ol‐5‐yl}methyl acetate ( 13 ), and [3‐([1,2,4]triazolo‐[4,3‐a]quinoxalin‐4‐yl)‐4‐halo‐1‐phenyl‐1H‐pyrazol‐5‐yl] methyl formate ( 15 ) was accomplished. The structural investigation of the new compounds is based on chemical and spectroscopic evidences. J. Heterocyclic Chem., (2011)  相似文献   

13.
Type 6 meso‐ionic [1,2,4]triazolo[5,1‐c]thiadiazoles were synthesised by oxidation of the corresponding N‐methyl‐N'‐(substitutedbenzal)‐5‐amino‐3‐substituted‐1,2,4‐triazol‐1‐yl)thiohydrazide ( 3 ) type bases or their [1,2,4]triazolo[5,1‐d][1,2,3,6]tetrazepin‐5‐thion ( 4 ) type ring tautomers. Besides spectroscopical evidence a preparative proof of their structure was also provided. X‐ray diffraction analysis of 3‐methylthio‐6‐morpholino‐1,2,4‐triazolo[5,1‐c]thiadiazole ( 8 ) showed quite unusual bond lengths for the N1‐S and S‐C3 bonds of the thiadiazole ring proving the meso‐ionic character of these derivatives unequivocally.  相似文献   

14.
The reaction of 3-R-5-amino-1,2,4-triazoles with the ethyl ester of 2-fluoroacetoacetic acid gave 2-R-fluoro[1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-ones. The reaction of a 3-R-1,2,4-triazolyl-5-diazonium salt with the ethyl ester of 2-fluoroacetoacetic acid and subsequent cyclization of the triazolylhydrazones lead to 7-R-3-fluoro[1,2,4]triazolo[5,1-c][1,2,4]triazin-4(1H)-ones.  相似文献   

15.
Synthesis of pyrazolo[1,5‐a]pyrimidines, [1,2,4]triazolo[1,5‐a]pyrimidine, 8,10‐dimethyl‐2‐(5‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐1,2,3‐triazol‐4‐yl)pyrido[2′,3′:3,4]‐pyrazolo[1,5‐a]pyrimidine, benzo[4,5]imidazo[1,2‐a]pyrimidine via heterocyclic amines, and sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one were carried out. Also, synthesis of isoxazoles, and pyrazoles from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one and hydroxymoyl chlorides and hydrazonoyl halides, respectively, were made. Analogously, (1,2,3‐triazol‐4‐yl)thieno[2,3‐b]pyridine derivatives were obtained from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐ triazole‐4‐yl)prop‐2‐en‐1‐one and cyanothioacetamide followed by its reacting with active methylene compounds. In addition to full characterization of all synthesized compounds, they were tested to evaluate their antimicrobial activities, and some compounds showed competitive activities to those of tetracycline, the typical antibacterial drug, and clotrimazole, the typical antifungal drug.  相似文献   

16.
5‐Oxo‐5H‐[1,3]thiazolo[3,2‐a]pyrimidine‐6‐carboxylic acid ( 4 ), and 6‐methylimidazo[2,1‐b]thiazole‐5‐carboxylic acid ( 17 ) were reacted with amines 6a‐i by the reaction with oxalyl chloride and N, N‐di methyl‐formamide as a catalyst into primary and secondary amide derivatives 7‐14 and 19‐22. From compound 24 N,N'‐disubstituted ureas 26, 27 and perhydroimidazo[1,5‐c]thiazole 29 derivatives of imidazo[2,1‐b]thiazole were prepared. By nmr analysis of compound 29 , the existence of two stereoisomers resulting from both optical, due to centre of chirality at C7′a, and conformational isomerism, due to restricted C5? N6′ bond rotation were proved.  相似文献   

17.
As a continuation of our studies on bicyclic heterocycles with benzodiazepine receptor affinity, derivatives with a 5:5 bicyclic skeleton, namely imidazo[2,1‐b]thiazoles, imidazo[2,1‐b]imidazoles and pyrrolo[1,2‐c]imidazoles were prepared. The compounds possessed an aromatic substituent with different spatial arrangement and distance to the bicyclic skeleton. X‐ray structure analysis was performed for Z‐2‐(4‐chlorobenzylidene)‐5,5‐diphenyl‐2,3,5,6‐tetrahydroimidazo[2,1‐b]imidazoline‐3,6‐dione ( 6a ) and 5‐amino‐6‐cyano‐7‐phenyl‐1‐oxo‐3‐thioxo‐2,3‐dihydro‐1H‐pyrrolo[1,2‐c]imidazole ( 20a ). In contrast to the previously described arylideneimidazo[2,1‐b]thiazepinones the smaller heterocyclic ring systems investigated in this study were devoid of meaningful benzodiazepine receptor affinity as well as anti‐convulsant activity.  相似文献   

18.
6‐Mercaptopurine has been utilized for the synthesis of various fused purine analogues through different chemical reactions to yield [1,4]thiazino[4,3,2‐gh ]purines 2, 3, 10a,b, 14 , (8‐oxo‐[1,4]thiazino[4,3,2‐gh ]purin‐7(8H )‐ylidene) acetate 4 , [1,4]thiazepino[4,3,2‐gh ]purine 6 , thiazolo[3,4,5‐gh ]purine 7 , imidazo[1,5,4‐gh ]purin‐5‐amine 8 , 5‐methylimidazo[1,5,4‐gh ]purine 9 , [1,2,4]triazino[4,3‐i ]purines 16, 18, 21 , [1,2,4]triazino[4,5,6‐gh ]purine 20 , 5‐methyl‐2‐(7H ‐purin‐6‐yl)‐1H ‐pyrazol‐3(2H )‐one 22 , [1,2,4]triazolo[4,3‐i ]purine 23 , [1,2,5]triazepino[5,4,3‐gh ]purine 24 , and ethyl 6‐(2‐(ethoxycarbonyl)hydrazinyl)‐9H ‐purine‐9‐carboxylate 26 . Seventeen of the newly synthesized compounds were selected by the NCI, Maryland, USA, and were tested for their anticancer activity in an initial single high dose in the full NCI 60 cell line panel among which [1,4]thiazino[4,3,2‐gh ]purine‐7,8‐dione 2 , 7‐benzyl‐[1,4]thiazino[4,3,2‐gh ]purine 10b , and 3‐(2,4‐dimethoxyphenyl)‐7H ‐[1,2,4]triazolo[4,3‐i]purine 23 were found to possess very potent anticancer activity against most of the cancer cell lines.  相似文献   

19.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

20.
The aza‐Wittig reactions of benzaldehyde‐, acetophenone‐ and benzophenone 1‐[(triphenylphosphor‐anylidene)amino]ethylidenehydrazones ( 1 ) with 2,3‐furandiones 6 provide a new route to 4H,8H‐1,2,4‐triazolo[1,5‐c][1,3]oxazepin‐4‐ones 14 or 5,6‐dihydro‐7H,12H‐naphtho[2,1‐f|[1,2,4]triazolo[1,5‐c]‐[1,3]oxazepin‐7‐ones 17 via the thermal reaction of the expected azinoimine vinylogous lactones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号