首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A bimolecular rate constant, kOH + dihydromyrcenol, of (38 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 2,6‐dimethyl‐7‐octen‐2‐ol (dihydromyrcenol,) at 297 ± 3 K and 1 atm total pressure. Additionally, an upper limit of the bimolecular rate constant, k, of approximately 2 × 10?18 cm3 molecule?1 s?1 was determined by monitoring the decrease in ozone (O3) concentration in an excess of dihydromyrcenol. To more clearly define part of dihydromyrcenol's indoor environment degradation mechanism, the products of the dihydromyrcenol + OH and dihydromyrcenol + O3 reactions were also investigated. The positively identified dihydromyrcenol/OH and dihydromyrcenol/O3 reaction products were acetone, 2‐methylpropanal (O?CHCH(CH3)2), 2‐methylbutanal (O?CHCH(CH3)CH2CH3), ethanedial (glyoxal, HC(?O)C(?O)H), 2‐oxopropanal (methylglyoxal, CH3C(?O)C(?O)H). The use of derivatizing agents O‐(2,3,4,5,6‐pentafluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible dihydromyrcenol/OH and dihydromyrcenol/O3 reaction mechanisms based on previously published volatile organic compound/OH and volatile organic compound/O3 gas‐phase reaction mechanisms. © 2006 Wiley Periodicals, Inc. *
  • 1 This article is a US Government work and, as such, is in the public domain of the United States of America
  • Int J Chem Kinet 38: 451–463, 2006  相似文献   

    2.
    Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure the kinetics of the reaction of n‐CH3(CH2)xCN (x = 0–3) with Cl atoms and OH radicals: k(CH3CN + Cl) = (1.04 ± 0.25) × 10−14, k(CH3CH2CN + Cl) = (9.20 ± 3.95) × 10−13, k(CH3(CH2)2CN + Cl) = (2.03 ± 0.23) × 10−11, k(CH3(CH2)3CN + Cl) = (6.70 ± 0.67) × 10−11, k(CH3CN + OH) = (4.07 ± 1.21) × 10−14, k(CH3CH2CN + OH) = (1.24 ± 0.27) × 10−13, k(CH3(CH2)2CN + OH) = (4.63 ± 0.99) × 10−13, and k(CH3(CH2)3CN + OH) = (1.58 ± 0.38) × 10−12 cm3 molecule−1 s−1 at a total pressure of 700 Torr of air or N2 diluents at 296 ± 2 K. The atmospheric oxidation of alkyl nitriles proceeds through hydrogen abstraction leading to several carbonyl containing primary oxidation products. HC(O)CN, NCC(O)OONO2, ClC(O)OONO2, and HCN were identified as the main oxidation products from CH3CN, whereas CH3CH2CN gives the products HC(O)CN, CH3C(O)CN, NCC(O)OONO2, and HCN. The oxidation of n‐CH3(CH2)xCN (x = 2–3) leads to a range of oxygenated primary products. Based on the measured OH radical rate constants, the atmospheric lifetimes of n‐CH3(CH2)xCN (x = 0–3) were estimated to be 284, 93, 25, and 7 days for x = 0,1, 2, and 3, respectively.  相似文献   

    3.
    The bimolecular rate constant of k (9.4 ± 2.4 × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the nitrate radical (NO3?) with 4‐(2,6,6‐trimethyl‐1‐cyclohexen‐1‐yl)‐3‐buten‐2‐one (β‐ionone) at (297 ± 3) K and 1 atmosphere total pressure. In addition, the products of β‐ionone + NO3? reaction were also investigated. The identified reaction products were glyoxal (HC(?O)C(?O)H), and methylglyoxal (CH3C(?O)C(?O)H). Derivatizing agents O‐(2,3,4,5,6‐pentafluorobenzyl)hydroxylamine and N,O‐bis(trimethylsilyl)trifluoroacetamide were used to propose the other major reaction products: 3‐oxobutane‐1,2‐diyl nitrate, 2,6,6‐trimethylcyclohex‐1‐ene‐carbaldehyde, 2‐oxo‐1‐(2,6,6‐trimethylcyclohex‐1‐en‐1‐yl)ethyl nitrate, pentane‐2,4‐dione, 3‐oxo‐1‐(2,6,6‐trimethylcyclohex‐1‐en‐1‐yl)butane‐1,2‐diyl dinitrate, 3,3‐dimethylcyclohexane‐1,2‐dione, and 4‐oxopent‐2‐enal. The elucidation of these products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible β‐ionone + NO3? reaction mechanisms based on previously published volatile organic compound + NO3? gas‐phase mechanisms. The additional gas‐phase products 5‐acetyl‐2‐ethylidene‐3‐methylcyclopentyl nitrate, 1‐(1‐hydroxy‐7,7‐dimethyl‐2,3,4,5,6,7‐hexahydro‐1 H‐inden‐2‐yl)ethanone, 1‐(1‐hydroxy‐3a,7‐dimethyl‐2,3,3a,4,5,6,‐hexahydro‐1 H‐inden‐2‐yl)ethanone, and 5‐acetyl‐2‐ethylidene‐3‐methylcyclopentanone are proposed to be the result of cyclization through a reaction intermediate. © 2009 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  • Int J Chem Kinet 41: 629–641, 2009  相似文献   

    4.
    Formates are produced in the atmosphere as a result of the oxidation of a number of species, notably dialkyl ethers and vinyl ethers. This work describes experiments to define the oxidation mechanisms of isopropyl formate, HC(O)OCH(CH3)2, and tert‐butyl formate, HC(O)OC(CH3)3. Product distributions are reported from both Cl‐ and OH‐initiated oxidation, and reaction mechanisms are proposed to account for the observed products. The proposed mechanisms include examples of the α‐ester rearrangement reaction, novel isomerization pathways, and chemically activated intermediates. The atmospheric oxidation of isopropyl formate by OH radicals gives the following products (molar yields): acetic formic anhydride (43%), acetone (43%), and HCOOH (15–20%). The OH radical initiated oxidation of tert‐butyl formate gives acetone, formaldehyde, and CO2 as major products. IR absorption cross sections were derived for two acylperoxy nitrates derived from the title compounds. Rate coefficients are derived for the kinetics of the reactions of isopropyl formate with OH (2.4 ± 0.6) × 10?12, and with Cl (1.75 ± 0.35) × 10?11, and for tert‐butyl formate with Cl (1.45 ± 0.30) × 10?11 cm3 molecule?1 s?1. Simple group additivity rules fail to explain the observed distribution of sites of H‐atom abstraction for simple formates. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 479–498, 2010  相似文献   

    5.
    Using a relative kinetic technique, rate coefficients have been measured, at 296 ± 2 K and 740 Torr total pressure of synthetic air, for the gas‐phase reaction of OH radicals with the dibasic esters dimethyl succinate [CH3OC(O)CH2CH2C(O)OCH3], dimethyl glutarate [CH3OC(O)CH2CH2CH2C(O)OCH3], and dimethyl adipate [CH3OC(O)CH2CH2CH2CH2C(O)OCH3]. The rate coefficients obtained were (in units of cm3 molecule?1 s?1): dimethyl succinate (1.89 ± 0.26) × 10?12; dimethyl glutarate (2.13 ± 0.28) × 10?12; and dimethyl adipate (3.64 ± 0.66) × 10?12. Rate coefficients have been also measured for the reaction of chlorine atoms with the three dibasic esters; the rate coefficients obtained were (in units of cm3 molecule?1 s?1): dimethyl succinate (6.79 ± 0.93) × 10?12; dimethyl glutarate (1.90 ± 0.33) × 10?11; and dimethyl adipate (6.08 ± 0.86) × 10?11. Dibasic esters are industrial solvents, and their increased use will lead to their possible release into the atmosphere, where they may contribute to the formation of photochemical air pollution in urban and regional areas. Consequently, the products formed from the oxidation of dimethyl succinate have been investigated in a 405‐L Pyrex glass reactor using Cl‐atom–initiated oxidation as a surrogate for the OH radical. The products observed using in situ Fourier transform infrared (FT‐IR) absorption spectroscopy and their fractional molar yields were: succinic formic anhydride (0.341 ± 0.068), monomethyl succinate (0.447 ± 0.111), carbon monoxide (0.307 ± 0.061), dimethyl oxaloacetate (0.176 ± 0.044), and methoxy formylperoxynitrate (0.032–0.084). These products account for 82.4 ± 16.4% C of the total reaction products. Although there are large uncertainties in the quantification of monomethyl succinate and dimethyl oxaloacetate, the product study allows the elucidation of an oxidation mechanism for dimethyl succinate. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 431–439, 2001  相似文献   

    6.
    The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of +2-butanol (2BU, CH3CH2CH(OH)CH3) and 2-pentanol (2PE, CH3CH2CH2CH(OH)CH3). 2BU and 2PE react with OH yielding bimolecular rate constants of (8.1±2.0)×10−12 cm3molecule−1s−1 and (11.9±3.0)×10−12 cm3molecule−1s−1, respectively, at 297±3 K and 1 atmosphere total pressure. Both 2BU and 2PE OH rate constants reported here are in agreement with previously reported values [1–4]. In order to more clearly define these alcohols' atmospheric reaction mechanisms, an investigation into the OH+alcohol reaction products was also conducted. The OH+2BU reaction products and yields observed were: methyl ethyl ketone (MEK, (60±2)%, CH3CH2C((DOUBLEBOND)O)CH3) and acetaldehyde ((29±4)% HC((DOUBLEBOND)O)CH3). The OH+2PE reaction products and yields observed were: 2-pentanone (2PO, (41±4)%, CH3C((DOUBLEBOND)O)CH2CH2CH3), propionaldehyde ((14±2)% HC((DOUBLEBOND)O)CH2CH3), and acetaldehyde ((40±4)%, HC((DOUBLEBOND)O)CH3). The alcohols' reaction mechanisms are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. Labeled (18O) 2BU/OH reactions were conducted to investigate 2BU's atmospheric transformation mechanism details. The findings reported here can be related to other structurally similar alcohols and may impact regulatory tools such as ground level ozone-forming potential calculations (incremental reactivity) [5]. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 745–752, 1998  相似文献   

    7.
    The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of 2‐propoxyethanol (2PEOH, CH3CH2CH2OCH2CH2(OH)). 2PEOH reacts with OH with a bimolecular rate constant of (21.4 ± 6.0) × 10−12 cm3molecule−1s−1 at 297 ± 3 K and 1 atm total pressure, which is a little larger than previously reported [1]. Assuming an average OH concentration of 1 × 106 molecules cm−3, an atmospheric lifetime of 13 h is calculated for 2PEOH. In order to more clearly define this hydroxy ether's atmospheric reaction mechanism, an investigation into the OH + 2PEOH reaction products was also conducted. The OH + 2PEOH reaction products and yields observed were: propyl formate (PF, 47 ± 2%, CH3CH2CH2OC(O)H), 2 propoxyethanal (CH3CH2CH2OCH2C(O)H 15 ± 1%), and 2‐ethyl‐1,3‐dioxolane (5.4 ± 0.4%). The 2PEOH reaction mechanism is discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. The findings reported here can be related to other structurally similar alcohols and may impact regulatory tools such as ground‐level ozone‐forming potential calculations (incremental reactivity) [2]. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 315–322, 1999  相似文献   

    8.
    The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of ethyl 3-ethoxypropionate (EEP, CH3CH2(SINGLE BOND)O(SINGLE BOND)CH2CH2C(O)O(SINGLE BOND)CH2CH3). EEP reacts with OH with a bimolecular rate constant of (22.9±7.4)×10−12 cm3 molecule−1s−1 at 297±3 K and 1 atmosphere total pressure. In order to more clearly define EEP's atmospheric reaction mechanism, an investigation into the OH+EEP reaction products was also conducted. The OH+EEP reaction products and yields observed were: ethyl glyoxate (EG, 25±1% HC((DOUBLE BOND)O)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (2-formyl) acetate (EFA, 4.86±0.2%, HC((DOUBLE BOND)O)(SINGLE BOND)CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (3-formyloxy) propionate (EFP, 30±1%, HC((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl formate (EF, 37±1%, HC((DOUBLE BOND)O)O(SINGLE BOND)CH2CH3), and acetaldehyde (4.9±0.2%, HC((DOUBLE BOND)O)CH3). Neither the EEP's OH rate constant nor the OH/EEP reaction products have been previously reported. The products' formation pathways are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. © 1997 John Wiley & Sons, Inc.  相似文献   

    9.
    The mechanism for the OH + 3‐methylfuran reaction has been studied via ab initio calculations to investigate various reaction pathways on the doublet potential energy surface. Optimizations of the reactants, products, intermediates, and transition structures are conducted using the MP2 level of theory with the 6‐311G(d,p) basis set. The single‐point electronic energy of each optimized geometry is refined with G3MP2 and G3MP2B3 calculations. The theoretical study suggests that the OH + 3‐methylfuran reaction is dominated by the formation of HC(O)CH?C(CH3)CHOH (P7) and CH(OH)CH?C(CH3)C(O)H (P9), formed from two low‐lying adducts, IM1 and IM2. The direct hydrogen abstraction pathways and the SN2 reaction may play a minor or negligible role in the overall reaction of OH with 3‐methylfuran. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

    10.
    The products of the gas‐phase reactions of the OH radical with n‐butyl methyl ether and 2‐isopropoxyethanol in the presence of NO have been investigated at 298 ± 2 K and 740 Torr total pressure of air by gas chromatography and in situ atmospheric pressure ionization tandem mass spectrometry. The products observed from n‐butyl methyl ether were methyl formate, propanal, butanal, methyl butyrate, and CH3C(O)CH2CH2OCH3 and/or CH3CH2C(O)CH2OCH3, with molar formation yields of 0.51 ± 0.11, 0.43 ± 0.06, 0.045 ± 0.010, ∼0.016, and 0.19 ± 0.04, respectively. Additional products of molecular weight 118, 149 and 165 were observed by API‐MS/MS analyses, with those of molecular weight 149 and 165 being identified as organic nitrates. The products observed and quantified from 2‐isopropoxyethanol were isopropyl formate and 2‐hydroxyethyl acetate, with molar formation yields of 0.57 ± 0.05 and 0.44 ± 0.05, respectively. For both compounds, the majority of the reaction products and reaction pathways are accounted for, and detailed reaction mechanisms are presented. The results of this product study are combined with previous literature product data to investigate the tropospheric reactions of R1R2C(Ȯ)OR radicals formed from ethers and glycol ethers, leading to a revised estimation method for the calculation of reaction rates of alkoxy radicals. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 501–513, 1999  相似文献   

    11.
    The polymers with functionalized alkoxy groups and with narrow molecular weight distribution (Mw/Mn < 1.12) are obtained from the living polymerization of 2‐alkoxy‐1‐methylenecyclopropanes using π‐allylpalladium complex, [(PhC3H4)Pd(μ‐Cl)]2, as the initiator. The polymers with oligoethylene glycol groups in the alkoxy substituent are soluble in water, and hydroboration of the C?C double bond and ensuing addition of the OH groups to C?N bond of alkyl isocyanate produce the polymers with urethane pendant groups. The reaction decreases solubility of the polymer in water significantly. Di‐ and triblock copolymers of the 2‐alkoxy‐1‐methylenecyclopropanes are prepared by consecutive addition of the two or three 2‐alkoxy‐1‐methylenecyclopropane monomers to the Pd initiator. The polymers which contain both hydrophobic butoxy or tert‐butoxy group and hydrophilic oligoethylene glycol group dissolve in water and/or organic solvents, depending on the substituents. The 1H NMR spectrum of poly( 1a ‐b‐ 1h ) (? (CH2C(?CH2)CHOBu)n? (CH2C(?CH2)CH(OCH2CH2)3OMe)m? ) in D2O solution exhibits peaks because of the butoxy and ?CH2 hydrogen in decreased intensity, indicating that the polymer forms micelle particles containing the hydrophilic segments in their external parts. Aqueous solution of the polymer with a small amount of DPH (DPH = 1,6‐diphenyl‐1,3,5‐hexatriene) shows the absorbance due to DPH at concentration of the polymer higher than 5.82 × 10?5 g mL?1. Other block copolymers such as poly( 1b ‐b‐ 1h ) and poly( 1a ‐b‐ 1g ) also form the micelles that contain DPH in their core. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 959–972, 2009  相似文献   

    12.
    The kinetics of reactions of the tertiary β‐brominated peroxy radical BrC(CH3)2C(CH3)2O2 (2‐bromo‐1,1,2‐trimethylpropylperoxy) have been studied using the laser flash photolysis technique, photolysing HBr at 248 nm in the presence of O2 and 2,3‐dimethylbut‐2‐ene. At room temperature, a rate constant of (2.0 ± 0.8) × 10−14 cm3 molecule−1 s−1 was determined for the BrC(CH3)2C(CH3)2O2 self‐reaction. The reaction of BrC(CH3)2C(CH3)2O2 with HO2 was investigated in the temperature range 306–393 K, yielding the following Arrhenius expression: k(BrC(CH3)2C(CH3)2O2 + HO2) = (2.04 ± 0.25) × 10−12 exp[(501 ± 36)K/T] cm3 molecule−1 s−1, giving by extrapolation (1.10 ± 0.13) × 10−11 cm3 molecule−1 s−1 at 298 K. These results confirm the enhancement of the peroxy radical self‐reaction reactivity upon β‐substitution, which is similar for Br and OH substituents. In contrast, no significant effect of substituent has been observed on the rate constant for the reactions of peroxy radicals with HO2. The global uncertainty factors on rate constants are equal to nearly 2 for the self‐reaction and to 1.35 for the reaction with HO2. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 33: 41–48, 2001  相似文献   

    13.
    The title complex, [Cu(ClO4)2(C9H13N5O)(CH3OH)], was synthesized from a methanolysis reaction of N‐(methylpyridin‐2‐yl)cyanoguanidine (L3) and copper(II) perchlorate hexahydrate in a 1:1 molar ratio. The CuII ion is six‐coordinated by an N3O3 donor set which confers a highly distorted and asymmetric octahedral geometry. Three N‐donor atoms from the chelating 1‐(methoxymethanimidoyl)‐2‐(pyridin‐2‐ylmethyl)guanidine (L3m) ligand and one O atom from the methanol molecule define the equatorial plane, with two perchlorate O atoms in the apical sites, one of which has a long Cu—O bond of 2.9074 (19) Å. The dihedral angle between the five‐ and six‐membered chelate rings is 8.21 (8)°. Two molecules are associated into a dimeric unit by intermolecular N—H...O(perchlorate) hydrogen bonds. Additionally, the weakly coordinated perchlorate anions also link adjacent [Cu(ClO4)2(L3m)(CH3OH)] dimers by hydrogen‐bonding interactions, resulting in a two‐dimensional layer in the (100) plane. Further C—H...O hydrogen bonds link the two‐dimensional layers along [100] to generate a three‐dimensional network.  相似文献   

    14.
    Sequential treatment of 2‐C6H4Br(CHO) with LiC≡CR1 (R1=SiMe3, tBu), nBuLi, CuBr?SMe2 and HC≡CCHClR2 [R2=Ph, 4‐CF3Ph, 3‐CNPh, 4‐(MeO2C)Ph] at ?50 °C leads to formation of an intermediate carbanion (Z)‐1,2‐C6H4{CA(=O)C≡CBR1}{CH=CH(CH?)R2} ( 4 ). Low temperatures (?50 °C) favour attack at CB leading to kinetic formation of 6,8‐bicycles containing non‐classical C‐carbanion enolates ( 5 ). Higher temperatures (?10 °C to ambient) and electron‐deficient R2 favour retro σ‐bond C?C cleavage regenerating 4 , which subsequently closes on CA providing 6,6‐bicyclic alkoxides ( 6 ). Computational modelling (CBS‐QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H+ gave 1,2‐dihydronaphthalen‐1‐ols, or under dehydrating conditions, 2‐aryl‐1‐alkynylnaphthlenes. Enolates 5 react in situ with: H2O, D2O, I2, allylbromide, S2Me2, CO2 and lead to the expected C ‐E derivatives (E=H, D, I, allyl, SMe, CO2H) in 49–64 % yield directly from intermediate 5 . The parents (E=H; R1=SiMe3, tBu; R2=Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R1=SiMe) and oxime formation. The latter allows formation of 6,9‐bicyclics via Beckmann rearrangement. The 6,8‐ring iodides are suitable Suzuki precursors for Pd‐catalysed C?C coupling (81–87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71–95 %).  相似文献   

    15.
    Synthesis and Characterization of 2‐O‐Functionalized Ethylrhodoximes and ‐cobaloximes 2‐Hydroxyethylrhodoxime and ‐cobaloxime complexes L—[M]—CH2CH2OH (M = Rh, L = PPh3, 1 ; M = Co, L = py, 2 ; abbr.: L—[M] = [M(dmgH)2L] (dmgH2 = dimethylglyoxime, L = axial base) were obtained by reaction of L—[M] (prepared by reduction of L—[M]—Cl with NaBH4 in methanolic KOH) with BrCH2CH2OH. H2O—[Rh], prepared by reduction of H[RhCl2(dmgH)2] with NaBH4 in methanolic KOH, reacted with BrCH2CH2OH followed by addition of pyridine yielding py—[Rh]—CH2CH2OH ( 3 ). Complexes 1 and 3 were found to react with (Me3Si)2NH forming 2‐(trimethylsilyloxy)ethylrhodoximes L—[Rh]—CH2CH2OSiMe3 (L = PPh3, 4 ; L = py, 5 ). Treatment of complex 1 with acetic anhydride resulted in formation of the 2‐(acet oxy)ethyl complex Ph3P—[Rh]—CH2CH2OAc ( 6 ). All complexes 1 — 6 were isolated in good yields (55—71 %). Their identities were confirmed by NMR spectroscopic investigations ( 1 — 6 : 1H, 13C; 1 , 4 , 6 : 31P) and for [Rh(CH2CH2OH)(dmgH)2(PPh3)]·CHCl3·1/2H2O ( 1 ·CHCl3·1/2H2O) and py—[Rh]—CH2CH2OSiMe3 ( 5 ) by X‐ray diffraction analyses, too. In both molecules the rhodium atoms are distorted octahedrally coordinated with triphenylphosphine and the organo ligands (CH2CH2OH and CH2CH2OSiMe3, respectively) in mutual trans position. Solutions of 1 in dmf decomposed within several weeks yielding a hydroxyrhodoxime complex “Ph3P—[Rh]—OH”. X‐ray diffraction analysis exhibited that crystals of this complex have the composition [{Rh(dmg)(dmgH) (H2O)(PPh3)}2]·4dmf ( 7 ) consisting of centrosymmetrical dimers. The rhodium atom is distorted octahedrally coordinated. Axial ligands are PPh3 and H2O. One of the two dimethylglyoximato ligands is doubly deprotonated. Thus, only one intramolecular O—H···O hydrogen bridge (O···O 2.447(9)Å) is formed in the equatorial plane. The other two oxygen atoms of dmgH and dmg2—, respectively, act as hydrogen acceptors each forming a strong (intermolecular) O···H′—O′ hydrogen bridge to the H′2O′ ligand of the other molecule (O···O′ 2.58(2)/2.57(2)Å).  相似文献   

    16.
    The rate coefficients for the reaction OH + CH3CH2CH2OH → products (k1) and OH + CH3CH(OH)CH3 → products (k2) were measured by the pulsed‐laser photolysis–laser‐induced fluorescence technique between 237 and 376 K. Arrhenius expressions for k1 and k2 are as follows: k1 = (6.2 ± 0.8) × 10?12 exp[?(10 ± 30)/T] cm3 molecule?1 s?1, with k1(298 K) = (5.90 ± 0.56) × 10?12 cm3 molecule?1 s?1, and k2 = (3.2 ± 0.3) × 10?12 exp[(150 ± 20)/T] cm3 molecule?1 s?1, with k2(298) = (5.22 ± 0.46) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are at the 95% confidence level and include estimated systematic errors. The results are compared with those from previous measurements and rate coefficient expressions for atmospheric modeling are recommended. The absorption cross sections for n‐propanol and iso‐propanol at 184.9 nm were measured to be (8.89 ± 0.44) × 10?19 and (1.90 ± 0.10) × 10?18 cm2 molecule?1, respectively. The atmospheric implications of the degradation of n‐propanol and iso‐propanol are discussed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 10–24, 2010  相似文献   

    17.
    The kinetics and products of the homogeneous gas-phase reactions of the OH radical with the chloroethenes were investigated at 298 ± 2 K and atmospheric pressure. Using a relative rate technique and ethane as a scavenger for the chlorine atoms produced in these OH radical reactions, rate constants (in units of 10?12 cm3 molecule?1s?1) of 8.11 ± 0.24, 2.38 ± 0.14, and 1.80 ± 0.03 were obtained for 1,1-dichloroethene, cis-1, 2-dichloroethene and trans-1,2-dichloroethene, respectively. Under these conditions, the major products observed by long pathlength FT-IR absorption spectroscopy were HCHO and HC(O)Cl from vinyl chloride; HC(O)Cl from cis- and trans-1,2-dichloroethene; HCHO and COCl2 from 1,1-dichloroethene; HC(O)Cl and COCl2 from trichloroethene; and COCl2 from tetrachloroethene. In the absence of a Cl atom scavenger, significant yields of the chloroacetyl chlorides, CHxCl3?xC(O)Cl, were observed from 1,1-dichloro-, trichloro- and tetrachloroethene, indicating that these products resulted from reactions involving chlorine atoms. The yields of all of these products are reported and the mechanisms of these gas-phase reactions discussed. In addition, OH radical reaction rate constants were redetermined, in the presence of a Cl atom scavenger, for cis- and trans-1,3-dichloropropene and 3-chloro-2-chloromethyl-1-propene, being (in units of 10?12 cm3 molecule?1 s?1) 8.45 ± 0.41, 14.4 ± 0.8, and 33.5 ± 3.0, respectively.  相似文献   

    18.
    A laser flash photolysis–resonance fluorescence technique has been employed to study the kinetics of the reactions of atomic chlorine with acetone (CH3C(O)CH3; k1), 2‐butanone (C2H5C(O)CH3; k2), and 3‐pentanone (C2H5C(O)C2H5; k3) as a function of temperature (210–440 K) and pressure (30–300 Torr N2). No significant pressure dependence is observed for any of the reactions studied. Arrhenius expressions (units are 10?11 cm3 molecule?1 s?1) obtained from the data are k1(T) = (1.53 ± 0.19) exp[(?594 ± 33)/T], k2(T) = (2.77 ± 0.33) exp[(+76 ± 33)/T], and k3(T) = (5.66 ± 0.41) exp[(+87 ± 22)/T], where uncertainties are 2σ and represent precision only. The accuracy of reported rate coefficients is estimated to be ±15% over the entire range of pressure and temperature investigated. The room temperature rate coefficients reported in this study are in good agreement with a majority of literature values. However, the activation energies reported in this study are in poor agreement with the literature values, particularly for 2‐butanone and 3‐pentanone. Possible explanations for discrepancies in published kinetic parameters are proposed, and the potential role of Cl + ketone reactions in atmospheric chemistry is discussed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 259–267, 2008  相似文献   

    19.
    The relative rate technique has been used to measure the rate coefficient for the reaction of the hydroxyl radical (OH) with methyl isobutyrate (MIB, (CH3)2 CHC(O) O CH3) to be (1.7 ± 0.4) × 10−12cm3molecule−1s−1 at 297 ± 3 K and 1 atmosphere total pressure. To more clearly define MIB's atmospheric degradation mechanism, the products of the OH + MIB reaction were also determined. The observed products and their yields were: acetone (97 ± 1%, (CH3)2C(O)) and methyl pyruvate (MP, 3.3 ± 0.3%, CH3C(O)C(O) O CH3). The products' formation pathways are discussed in light of current understanding of the atmospheric chemistry of oxygenated organic compounds. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 551–557, 1999  相似文献   

    20.
    A pure unsaturated cyclic ester, 6,7‐dihydro‐2(3H)‐oxepinone (DHO2), was prepared by a new synthetic route. The copolymerization of DHO2 with ?‐caprolactone (?CL) was initiated by aluminum isopropoxide [Al(OiPr)3] at 0 °C as an easy way to produce unsaturated aliphatic polyesters with nonconjugated C?C double bonds in a controlled manner. The chain growth was living, as certified by the agreement between the experimental molecular weight at total monomer conversion and the value predicted from the initial monomer/initiator molar ratio. The polydispersity was reasonably low (weight‐average molecular weight/number‐average molecular weight ≤ 1.2). The homopolymerization of DHO2 was, however, not controlled because of fast intramolecular transesterification. Copolymers of DHO2 and ?CL were quantitatively oxidized with the formation of epoxides containing chains. The extent of the epoxidation allowed the thermal properties and thermal stability of the copolyesters to be modulated. The epoxidized copolyesters were successfully converted into thioaminated chains, which were then quaternized into polycations. No degradation occurred during the chemical modification. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2286–2297, 2002  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号