首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Bernstein  J. Riedel 《PAMM》2002,1(1):238-239
A realistic and reliable model is an important precondition for the simulation of revitalization tasks as well as for the estimation of properties of existing buildings. Within one theory the parameters of the model should be approximated best by gradually performed experiments and their analysis. Usually this kind of optimization problems leads into non‐convex non‐differentiable objective function spaces with high dimensions. Normally ore complex structures are modeled using finite element method. We present a method of identifying Young's modulus for a beam and a plate by using FE‐models and genetic optimization algorithms for parameter identification.  相似文献   

2.
Analysis of deformation and bending moment distributions along sections of the bottom plate of a large unanchored cylindrical liquid storage tank with appreciable out-of-plane localized differential edge settlement is considered. The analysis uses approximate simple slender beam bending theory to model localized edge settlements of the plate and takes into account the effects of foundation compliance, initial settlement shape, shell and hydrostatic loadings and the shell-bottom plate junction stiffness. The obtained model is solved, in the elastic range, using a combined analytical–numerical procedure for the deflection and bending moment distributions along the beam. The obtained approximate solutions were displayed graphically for selected values of system parameters: edge settlement amplitude, plate thickness, foundation stiffness, and hydrostatic load. The maximum allowable edge displacement amplitudes based on the plate yielding stress predicted by the present study are compared for the selected values of system parameters with those recommended in the API standard 653.  相似文献   

3.
In this paper, we consider a plate–beam system in which the Reissner–Mindlin plate model is combined with the Timoshenko beam model. Natural frequencies and vibration modes for the system are calculated using the finite element method. The interface conditions at the contact between the plate and beams are discussed in some detail. The impact of regularity on the enforcement of certain interface conditions is an important feature of the paper.  相似文献   

4.
In this paper we consider the question of stabilization of a fluid–structure model that describes the interaction between a 3‐D incompressible fluid and a 2‐D plate, the interface, which coincides with a flat flexible part of the surface of the vessel containing the fluid. The mathematical model comprises the Stokes equations and the equations for the longitudinal deflections of the plate with inclusion of the shear stress, which the fluid exerts on the plate. We show that the energy associated with the model decays strongly when the interface is equipped with a locally supported dissipative mechanism. Our main tool is an abstract resolvent criterion due to Tomilov. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a nonlinear finite element model for the flexure-shear response of reinforced concrete (RC) beams strengthened externally by epoxy bonded steel plates. The model includes a special interface element to simulate the thin epoxy adhesive layer and which allows for the metamorphosis of failure mode from plate yielding to separation as the plate thickness tp is increased. The numerical results show close correlation to experimental data available for an RC beam strengthened by plates of various thickness.  相似文献   

6.
In this paper we consider a structural acoustic model which takes account of thermal effects over and above displacement, rotational inertia and shear effects in the flat flexible structural component of the model. Thus the structural medium is a Reissner-Mindlin plate into which an additional degree of freedom, viz. temperature variation in the plate, has been introduced and the constitutive equations for the structural acoustic model couple parabolic dynamics with hyperbolic dynamics. We show unique solvability of the mathematical model and investigate the effect of the presence of thermal effects on the mechanical dissipation devices needed to attain uniform stabilization of the two-dimensional model in which the structural component is a Timoshenko beam. It turns out that, as in linear structural acoustic models which use the Euler-Bernoulli equation or the Kirchoff equation to describe the deflections of the thermo-elastic structural medium, uniform stabilization of the energy associated with the model can be attained without introducing mechanical dissipation at the free edge of the beam. Open problems with regard to the stabilization of the three-dimensional model are outlined.  相似文献   

7.
Buckling analysis of a thin cylindrical shell stiffened by rings with T-shaped cross section under the action of uniform internal pressure in the shell is performed. An annular plate stiffened over the outer edge by a circular beam is used as the ring model. The classical ring model, which is a beam with a T-shaped cross section, is inappropriate in this problem, since in the case of the loss of stability, buckling deformations are localized on the ring surface. The beam model does not allow one to find the critical pressure that corresponds to such a loss of stability. In the first approximation, the problem of the loss of stability of the annular plate connected with the shell is reduced to solving the boundary value problem for finding eigenvalues of the annular plate bending equation. Approximate formulas for determining critical pressure are obtained under the assumption that the plate width is much smaller than its inner radius. The results found using the Rayleigh method and the shooting method differ slightly from each other. It has been demonstrated that the critical pressure for rings with rectangular cross section is higher than that for rings with a T-shaped cross section.  相似文献   

8.
In this paper we consider a two-dimensional hybrid thermo-elastic structure consisting of a thermo-elastic plate which has a beam attached to its free end. We show that the initial-boundary-value problem for the interactive system of partial differential equations which take account of the mechanical strains/stresses and the thermal stresses in the plate and the beam, can be associated with a uniformly bounded evolution operator. It turns out that the interplay of parabolic dynamics due to the thermal effects in the hybrid structure and the hyperbolic dynamics associated with the elasticity of the structure yields analyticity for the entire system. This result yields solvability for the problem under optimal initial freedom of the displacement, velocity, and temperature in the plate and the beam, while uniform stability is readily available.  相似文献   

9.
Michael Wenzel 《PAMM》2004,4(1):382-383
A hierarchical model for dimensional adaptivity, using mixed beam‐shell structures, is presented. Thin‐walled beam structures are often calculated on the base of beam theories. Parts of the global structure, like framework corners, are usually analyzed with shell elements in a separate model. To minimize the modeling and calculation expense, a transition element to couple beam and shell structures is used. A dimensional adaptiv algorithm is introduced to automate this the procedure of modeling and calculation. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
D. Huber  M. Krommer  H. Irschik 《PAMM》2008,8(1):10289-10290
The present paper studies the influence of lateral eigenstrains on the transverse deflection of wide beams. We show that in this case a laterally nonuniform transverse displacement becomes notable; moreover, it turns out that the axial variation of the transverse displacement is significantly altered in comparison to the results obtained from beam theory. In order to derive a corrected analytical solution for the transverse displacement of wide beams, the latter are modeled as thin plates with induced eigenstrains in both in–plane directions. A Galerkin method is utilized to solve the plate equations, in which solutions for the transverse displacement resulting from beam theory are used as shape functions for the plate deflection. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
6o.IntroductionThemainresultsofthispaperwerepresentedin[4l.Letusconsiderthetransversalvibrationsu(x,t)(o5x5L,t2o)ofahomogeneousbeam.Inthefollowing,thelettersp,E,G(resp.S,I,k)withdenotetheusualphysical(resp.geometrical)paJrametersofthebeam.Moreprecisely,p:=volumedensity,E:=Youngmodulusofelasticity,G:=shearmodulus,S:=areaofthecrosssection,I:=momentofinertiaofthecrosssection,R2:=IS-',kisapositivenumber51whichdependsupon'thegeometryofthecrosssection(see[62,2o]),e.g.forrectangularcrosssection…  相似文献   

12.
In this paper, we compare the Kirchhoff–Love model for a linearly elastic rectangular plate \({\Omega^{t\varepsilon}=(0,L)\times(-t,t)\times(-\varepsilon,\varepsilon)}\) of thickness \({2\varepsilon}\) with the Bernoulli–Navier model for the same solid considered as a linearly elastic beam of length \({L}\) and cross section \({\omega_1^{t\varepsilon}=(-t,t)\times(-\varepsilon,\varepsilon)}\). We assume that the solid is clamped on both ends \({\{0,L\}\times[-t,t]\times[-\varepsilon,\varepsilon]}\). We show that the scaled version of the displacements field \({{\bf{\zeta}}^t}\) in the middle plane, solution of the Kirchhoff–Love model, converges strongly to the unique solution of a one-dimensional problem when the plate width parameter \({t}\) tends to zero. Moreover, after rescaling this limit, we show that, as a matter of fact, it is the solution of the Bernoulli–Navier model for the beam. This means that, under appropriate assumptions on the order of magnitude of the data, the Bernoulli–Navier displacement field is the natural approximation of the Kirchhoff–Love displacement field when the cross section of the plate is rectangular and its width is sufficiently small and homothetic to thickness.  相似文献   

13.
We study asymptotic dynamics of a coupled system consisting of linearized 3D Navier–Stokes equations in a bounded domain and the classical (nonlinear) elastic plate equation for in‐plane motions on a flexible flat part of the boundary. The main novelty of the model is the assumption that the transversal displacements of the plate are negligible relative to in‐plane displacements. These kinds of models arise in the study of blood flows in large arteries. Our main result states the existence of a compact global attractor of finite dimension. Under some conditions this attractor is an exponentially attracting single point. We also show that the corresponding linearized system generates an exponentially stable C0‐semigroup. We do not assume any kind of mechanical damping in the plate component. Thus our results mean that dissipation of the energy in the fluid because of viscosity is sufficient to stabilize the system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The mechanical model of a thin plate with boundary control and observation is presented as a port-Hamiltonian system (PHs1), both in vectorial and tensorial forms: the Kirchhoff-Love model of a plate is described by using a Stokes-Dirac structure and this represents a novelty with respect to the existing literature. This formulation is carried out both in vectorial and tensorial forms. Thanks to tensorial calculus, this model is found to mimic the interconnection structure of its one-dimensional counterpart, i.e. the Euler-Bernoulli beam.The Partitioned Finite Element Method (PFEM2) is then extended to obtain a suitable, i.e. structure-preserving, weak form. The discretization procedure, performed on the vectorial formulation, leads to a finite-dimensional port-Hamiltonian system. This part II of the companion paper extends part I, dedicated to the Mindlin model for thick plates. The thin plate model comes along with additional difficulties, because of the higher order of the differential operator under consideration.  相似文献   

15.
16.
In this paper, we are concerned with a model for the magneto–elastic interactions of a three‐dimensional elastic body and a two‐dimensional flexible plate, which is attached to the flat flexible part of the surface of the body. Both the solid body and the plate are permeated by magnetic fields. The mathematical model is analyzed from the point of view of existence and uniqueness and stabilization.It turns out that, in the presence of the magnetic fields in the solid and the plate, strong stabilization can be achieved under viscous damping in the plate in one direction that is determined by the nature of the primary magnetic fields in the body and the plate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
基面力单元法在空间几何非线性问题中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
基于基面力的概念,并结合Euler角的位移描述方法,提出了适用于几何非线性计算的空间6结点余能基面力单元.使用MATLAB语言编程并对典型梁、板结构进行弹性大变形数值模拟.由计算结果可以看出,基于余能原理的基面力元法(BFEM)在计算构件的空间大变形时有较好的计算精度,对比传统有限元计算方法具有网格尺寸影响小和抗畸变能力强的特点,有良好的计算性能.  相似文献   

18.
We investigate decay properties for a system of coupled partial differential equations which model the interaction between acoustic waves in a cavity and the walls of the cavity. In this system a wave equation is coupled to a structurally damped plate or beam equation. The underlying semigroup for this system is not uniformly stable, but when the system is appropriately restricted we obtain some uniform stability. We present two results of this type. For the first result, we assume that the initial wave data is zero, and the initial plate or beam data is in the natural energy space; then the corresponding solution to system decays uniformly to zero. For the second result, we assume that the initial condition is in the natural energy space and the control function is L2(0,∞) (in time) into the control space; then the beam displacement and velocity are both L2(0,∞) into a space with two spatial derivatives.  相似文献   

19.
Based on the classical laminated plate theory and the cohesive zone model, a theoretical model for general delamination cracked laminates was established for crack propagation of pure mode Ⅱ ENF specimens. Compared with the conventional beam theory, the proposed model fully considered the softening process of the cohesive zone and introduced the nonlinear behavior of ENF specimens before failure. The predicted failure load is smaller than that under the beam theory and closer to the experimental data in literatures. Compared with the beam theory with only fracture toughness considered, the proposed model can simultaneously analyze the influences of the interface strength, the fracture toughness and the initial interface stiffness on the load-displacement curves in ENF tests. The results show that, the interface strength mainly affects the mechanical behavior of specimens before failure, but has no influence on crack propagation. The fracture toughness is the main parameter affecting crack propagation, and the initial interface stiffness only affects the linear elastic loading stage. The cohesive zone length increases with the fracture toughness and decreases with the interface strength. The effect of the interface strength on the cohesive zone length is more obvious than that of the fracture toughness. When the adhesive zone tip reaches the half length of the specimen, the adhesive zone length will decrease to a certain extent. Copyright ©2022 Applied Mathematics and Mechanics. All rights reserved.  相似文献   

20.
In this paper we consider the question of stabilization of a linear three‐dimensional structural acoustic model, which incorporates displacement, rotational inertia, shear and thermal effects in the flat flexible structural component of the model. We show strong stabilization of the coupled model without incorporating viscous or boundary damping in the equations for the gas dynamics and without imposing geometric conditions. It turns out that damping is needed in the interior of the plate. Our main tool is an abstract resolvent criterion due to Y. Tomilov. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号