首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Let G be a planar graph and let g(G) and Δ(G) be its girth and maximum degree, respectively. We show that G has an edge‐partition into a forest and a subgraph H so that (i) Δ(H) ≤ 4 if g(G) ≥ 5; (ii) Δ(H) ≤ 2 if g(G) ≥ 7; (iii) Δ(H)≤ 1 if g(G) ≥ 11; (iv) Δ(H) ≤ 7 if G does not contain 4‐cycles (though it may contain 3‐cycles). These results are applied to find the following upper bounds for the game coloring number colg(G) of a planar graph G: (i) colg(G) ≤ 8 if g(G) ≥ 5; (ii) colg(G)≤ 6 if g(G) ≥ 7; (iii) colg(G) ≤ 5 if g(G) ≥ 11; (iv) colg(G) ≤ 11 if G does not contain 4‐cycles (though it may contain 3‐cycles). © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 307–317, 2002  相似文献   

2.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

3.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
A Hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, …, vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2kn ≤ 3k − 6. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999  相似文献   

5.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

6.
A graph G is k‐choosable if its vertices can be colored from any lists L(ν) of colors with |L(ν)| ≥ k for all ν ∈ V(G). A graph G is said to be (k,?)‐choosable if its vertices can be colored from any lists L(ν) with |L(ν)| ≥k, for all ν∈ V(G), and with . For each 3 ≤ k ≤ ?, we construct a graph G that is (k,?)‐choosable but not (k,? + 1)‐choosable. On the other hand, it is proven that each (k,2k ? 1)‐choosable graph G is O(k · ln k · 24k)‐choosable. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

7.
If G is a graph on n vertices and r ≥ 2, we let mr(G) denote the minimum number of complete multipartite subgraphs, with r or fewer parts, needed to partition the edge set, E(G). In determining mr(G), we may assume that no two vertices of G have the same neighbor set. For such reducedgraphs G, we prove that mr(G) ≥ log2 (n + r − 1)/r. Furthermore, for each k ≥ 0 and r ≥ 2, there is a unique reduced graph G = G(r, k) with mr(G) = k for which equality holds. We conclude with a short proof of the known eigenvalue bound mr(G) ≥ max{n+ (G, n(G)/(r − 1)}, and show that equality holds if G = G(r, k). © 1996 John Wiley & Sons, Inc.  相似文献   

8.
A (k; g)-cage is a graph of minimum order among k-regular graphs with girth g. We show that for every cutset S of a (k; g)-cage G, the induced subgraph G[S] has diameter at least ⌊g/2⌋, with equality only when distance ⌊g/2⌋ occurs for at least two pairs of vertices in G[S]. This structural property is used to prove that every (k; g)-cage with k ≥ 3 is 3-connected. This result supports the conjecture of Fu, Huang, and Rodger that every (k; g)-cage is k-connected. A nonseparating g-cycle C in a graph G is a cycle of length g such that GV(C) is connected. We prove that every (k; g)-cage contains a nonseparating g-cycle. For even g, we prove that every g-cycle in a (k; g)-cage is nonseparating. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 35–44, 1998  相似文献   

9.
This paper discusses the circular version of list coloring of graphs. We give two definitions of the circular list chromatic number (or circular choosability) χc, l(G) of a graph G and prove that they are equivalent. Then we prove that for any graph G, χc, l(G) ≥ χl(G) ? 1. Examples are given to show that this bound is sharp in the sense that for any ? 0, there is a graph G with χc, l(G) > χl(G) ? 1 + ?. It is also proved that k‐degenerate graphs G have χc, l(G) ≤ 2k. This bound is also sharp: for each ? < 0, there is a k‐degenerate graph G with χc, l(G) ≥ 2k ? ?. This shows that χc, l(G) could be arbitrarily larger than χl(G). Finally we prove that if G has maximum degree k, then χc, l(G) ≤ k + 1. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 210–218, 2005  相似文献   

10.
The odd girth of a graph G gives the length of a shortest odd cycle in G. Let ƒ(k, g) denote the smallest n such that there exists a k-regular graph of order n and odd girth g. It is known that ƒ(k, g) ≥ kg/2 and that ƒ(k, g) = kg/2 if k is even. The exact values of ƒ(k, g) are also known if k = 3 or g = 5. Let xe denote the smallest even integer no less than x, δ(g) = (−1)g − 1/2, and s(k) = min {p + q | k = pq, where p and q are both positive integers}. It is proved that if k ≥ 5 and g ≥ 7 are both odd, then [formula] with the exception that ƒ(5, 7) = 20.  相似文献   

11.
Graph G is a (k, p)‐graph if G does not contain a complete graph on k vertices Kk, nor an independent set of order p. Given a (k, p)‐graph G and a (k, q)‐graph H, such that G and H contain an induced subgraph isomorphic to some Kk?1‐free graph M, we construct a (k, p + q ? 1)‐graph on n(G) + n(H) + n(M) vertices. This implies that R (k, p + q ? 1) ≥ R (k, p) + R (k, q) + n(M) ? 1, where R (s, t) is the classical two‐color Ramsey number. By applying this construction, and some its generalizations, we improve on 22 lower bounds for R (s, t), for various specific values of s and t. In particular, we obtain the following new lower bounds: R (4, 15) ≥ 153, R (6, 7) ≥ 111, R (6, 11) ≥ 253, R (7, 12) ≥ 416, and R (8, 13) ≥ 635. Most of the results did not require any use of computer algorithms. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 231–239, 2004  相似文献   

12.
Let denote the set of graphs with each vertex of degree at least r and at most s, v(G) the number of vertices, and τk (G) the maximum number of disjoint k‐edge trees in G. In this paper we show that
  • (a1) if G ∈ and s ≥ 4, then τ2(G) ≥ v(G)/(s + 1),
  • (a2) if G ∈ and G has no 5‐vertex components, then τ2(G) ≥ v(G)4,
  • (a3) if G ∈ and G has no k‐vertex component, where k ≥ 2 and s ≥ 3, then τk(G) ≥ (v(G) ‐k)/(skk + 1), and
  • (a4) the above bounds are attained for infinitely many connected graphs.
Our proofs provide polynomial time algorithms for finding the corresponding packings in a graph. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 306–324, 2007  相似文献   

13.
For a graph G and an integer k ≥ 1, let ςk(G) = dG(vi): {v1, …, vk} is an independent set of vertices in G}. Enomoto proved the following theorem. Let s ≥ 1 and let G be a (s + 2)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, ς2(G) − s} passing through any path of length s. We generalize this result as follows. Let k ≥ 3 and s ≥ 1 and let G be a (k + s − 1)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, − s} passing through any path of length s. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 177–184, 1998  相似文献   

14.
Let α(G), γ(G), and i(G) be the independence number, the domination number, and the independent domination number of a graph G, respectively. For any k ≥ 0, we define the following hereditary classes: αi(k) = {G : α(H) − i(H) ≤ k for every H ∈ ISub(G)}; αγ(k) = {G : α(H) − γ(H) ≤ k for every H ∈ ISub(G)}; and iγ(k) = {G : i(H) − γ(H) ≤ k for every H ∈ ISub(G)}, where ISub(G) is the set of all induced subgraphs of a graph G. In this article, we present a finite forbidden induced subgraph characterization for αi(k) and αγ(k) for any k ≥ 0. We conjecture that iγ(k) also has such a characterization. Up to the present, it is known only for iγ(0) (domination perfect graphs [Zverovich & Zverovich, J Graph Theory 20 (1995), 375–395]). © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 303–310, 1999  相似文献   

15.
We propose a conjecture: for each integer k ≥ 2, there exists N(k) such that if G is a graph of order nN(k) and d(x) + d(y) ≥ n + 2k - 2 for each pair of non-adjacent vertices x and y of G, then for any k independent edges e1, …, ek of G, there exist k vertex-disjoint cycles C1, …, Ck in G such that eiE(Ci) for all i ∈ {1, …, k} and V(C1 ∪ ···∪ Ck) = V(G). If this conjecture is true, the condition on the degrees of G is sharp. We prove this conjecture for the case k = 2 in the paper. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 105–109, 1997  相似文献   

16.
Given a list of boxes L for a graph G (each vertex is assigned a finite set of colors that we call a box), we denote by f(G, L) the number of L-colorings of G (each vertex must be colored wiht a color of its box). In the case where all the boxes are identical and of size k, f(G, L) = p(G, k), where P=G, k) is the chromatic polynominal of G. We denote by F(G, k) the minimum of f(G, L) over all the lists of boxes such that each box has size at least k. It is clear that F(G, k) ≤ P(G, k) for all G, k, and we will see in the introduction some examples of graphs such that F(G, k) < P(G, k) for some k. However, we will show, in answer to a problem proposed by A. Kostochka and A. Sidorenko (Fourth Czechoslovak Symposium on Combinatorics, Prachatice, Jin, 1990), that for all G, F(G, k) = P(G, k) for all k sufficiently large. It will follow in particular that F(G, k) is not given by a polynominal in k for all G. The proof is based on the analysis of an algorithm for computing f(G, L) analogous to the classical one for computing P(G, k).  相似文献   

17.
Let G be a connected claw-free graph on n vertices. Let ς3(G) be the minimum degree sum among triples of independent vertices in G. It is proved that if ς3(G) ≥ n − 3 then G is traceable or else G is one of graphs Gn each of which comprises three disjoint nontrivial complete graphs joined together by three additional edges which induce a triangle K3. Moreover, it is shown that for any integer k ≥ 4 there exists a positive integer ν(k) such that if ς3(G) ≥ nk, n > ν(k) and G is non-traceable, then G is a factor of a graph Gn. Consequently, the problem HAMILTONIAN PATH restricted to claw-free graphs G = (V, E) (which is known to be NP-complete) has linear time complexity O(|E|) provided that ς3(G) ≥ . This contrasts sharply with known results on NP-completeness among dense graphs. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 75–86, 1998  相似文献   

18.
The odd girth of a graph G is the length of a shortest odd cycle in G. Let d(n, g) denote the largest k such that there exists a k-regular graph of order n and odd girth g. It is shown that dn, g ≥ 2|n/g≥ if n ≥ 2g. As a consequence, we prove a conjecture of Pullman and Wormald, which says that there exists a 2j-regular graph of order n and odd girth g if and only if ngj, where g ≥ 5 is odd and j ≥ 2. A different variation of the problem is also discussed.  相似文献   

19.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is L‐list colorable if for a given list assignment L = {L(v): vV}, there exists a proper coloring c of G such that c (v) ∈ L(v) for all vV. If G is L‐list colorable for every list assignment with |L (v)| ≥ k for all vV, then G is said k‐choosable. A graph is said to be acyclically k‐choosable if the obtained coloring is acyclic. In this paper, we study the links between acyclic k‐choosability of G and Mad(G) defined as the maximum average degree of the subgraphs of G and give some observations about the relationship between acyclic coloring, choosability, and acyclic choosability. © 2005 Wiley Periodicals, Inc. J Graph Theory 51: 281–300, 2006  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号