首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The features of the flow in the zone of interaction between a plane bow shock and an oblique shock or an isentropic compression wave are studied. The limiting interaction regimes are considered analytically, the similarity conditions are formulated, and the limiting values of the flow parameters are determined for the high-pressure compressed gas jet formed in the interference and for the body surface. On the basis of a numerical solution of the Euler equations the flow specifics in the neighborhood of the spreading line on the body are determined and ways of reducing the dynamic and thermal loadings on this line are proposed.  相似文献   

2.
Hypersonic three-dimensional viscous rarefied gas flow past blunt bodies is investigated in the neighborhood of the stagnation point. The problem of applicability of the model of a thin viscous shock layer to the regime of transition from continuum to free-molecular flow is considered. In [1], it was shown that at low Reynolds numbers three hypersonic flow regimes can be distinguished and one of those regimes was investigated. In the present study an asymptotic solution of the thin viscous shock layer equations is obtained for another flow regime. With decrease in the Reynolds number the heat transfer coefficient determined by the solution obtained approaches its free-molecular value and the friction coefficient approaches its free-molecular limit, provided that the shock layer thickness is small. The analytical solution is compared with a numerical solution and the results of calculations based on direct Monte Carlo simulation.  相似文献   

3.
Analytical solution of shock wave propagation in pure gas in a shock tube is usually addressed in gas dynamics. However, such a solution for granular media is complex due to the inclusion of parameters relating to particles configuration within the medium, which affect the balance equations. In this article, an analytical solution for isothermal shock wave propagation in an isotropic homogenous rigid granular material is presented, and a closed-form solution is obtained for the case of weak shock waves. Fluid mass and momentum equations are first written in wave and (mathematical) non-conservation forms. Afterwards by redefining the sound speed of the gas flowing inside the pores, an analytical solution is obtained using the classical method of characteristics, followed by Taylor’s series expansion based on the assumption of weak flow which finally led to explicit functions for velocity, density and pressure. The solution enables plotting gas velocity, density and pressure variations in the porous medium, which is of high interest in the design of granular shock isolators.  相似文献   

4.
The stability of hypersonic viscous gas flow in a shock layer in the neighborhood of a flat plate is considered. The stability of the velocity, temperature, density, and pressure profiles calculated on the basis of the complete viscous shock layer equations is investigated within the framework of the linear stability theory with allowance for the shock wave relations. The calculated perturbation growth rates and phase velocities are compared with the experimental data obtained by means of electron-beam fluorescence.  相似文献   

5.
The gas flow in plane shock waves slipping along an impermeable surface with a rectangular cavity where solid disperse particles are suspended is considered numerically. The motion of the gas and particles (gas suspension) is modeled by equations of mechanics of multiphase media. Some laws of the behavior of the dusty cloud in the cavity are established for the case of wave interaction with the cavity.  相似文献   

6.
Using the weakly non-linear geometrical acoustics theory, we obtain the small amplitude high frequency asymptotic solution to the basic equations in Eulerian coordinates governing one dimensional unsteady planar, spherically and cylindrically symmetric flow in a reactive hydrodynamic medium. We derive the transport equations for the amplitudes of resonantly interacting waves. The evolutionary behavior of non-resonant wave modes culminating into shock waves is also studied.   相似文献   

7.
We study supersonic flows of an electrically conductive gas in crossed electric and magnetic fields [1] in the presence of shock waves. It is shown that three steady flow regimes can exist, and that these are defined by the electrical conductivity of the gas as a function of temperature and density.
  1. The normal regime is characterized by a tendency for the shock to move toward the channel entrance on increase of the static pressure at the channel exit. The steady regime of this type exists and is stable.
  2. The anomalous regime (formally constructed) is characterized by a tendency for the shock to move toward the exit on increase of the static pressure at the channel exit. This regime is unstable and the flow in the MHD-channel may be either entirely supersonic or entirely subsonic.
  3. The limiting (boundary) regime is intermediate between the normal and anomalous regimes and is characterized by the fact that the stationary position of the shock wave and its amplitude are not uniquely defined. Steady flow in this case is not unique.
This study involves formal construction both of the solution to the steady-state problem and the corresponding nonsteady-state problem [4]. The establishment of a steady regime in the solution of the unsteady problem, is at the same time, a verification of its stability.  相似文献   

8.
9.
A one-dimensional model for the numerical simulation of transport effects in small-scale, i.e., low Reynolds number, shock tubes is presented. The conservation equations have been integrated in the lateral directions and three-dimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the axial conservation equations. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady flow by choosing a coordinate system attached to the shock. The boundary layer problem is thereby reduced to a laminar solution, similar to the Blasius solution, with the exception that the wall velocity can be nonzero. The resulting one-dimensional equations are then solved numerically using a two-step Lax-Wendroff/ MacCormack scheme with flux correction transport. For validation purposes, comparisons are performed against previously published shock structure and low Reynolds number shock tube experiments; good agreement is observed. The model has been used to predict the performance of a 10μm shock tube and the result of this simulation shows the possibility of shock wave disappearance at lower pressure ratios for a micro-scale shock tube.   相似文献   

10.
Hypersonic rarefied flow past blunt bodies is studied in the continuum-free-molecular transition regime. On the basis of an asymptotic analysis three rarefied gas flow patterns are established depending on the relation between the relevant parameters of the problem. In the first regime corresponding to a cold surface asymptotic solutions of the equations of a thin viscous shock layer are derived at low Reynolds numbers in the axisymmetric and plane cases. Simple analytical expressions for the pressure and the heat transfer and friction coefficients are obtained as functions of the freestream parameters and the body geometry. With decrease in the Reynolds number the coefficients approach the values corresponding to free-molecular flow. In this regime a similarity parameter for the hypersonic rarefied flow past bodies is determined. The asymptotic solutions are compared with numerical solutions and the results of direct statistical simulation by the Monte Carlo method.  相似文献   

11.
V. Svetsov 《Shock Waves》2001,11(3):229-244
A new nonstationary regime of the flow around a step and a cylinder was found to exist at high free-stream Mach numbers for gas specific heat ratios below 1.2. The main features of the flow are strong vortices in the shock-compressed region with supersonic reversal velocities at the body face. The bow shock wave takes on a complicated shape, fluctuating in time. The vortical regimes can result from local heterogeneities in the free stream. The case of the heterogeneity is studied in this paper in the form of a thin thermal layer of limited length. The vortical regime remains in existence after the source of disturbances is removed. The results have been obtained through computer simulations through the use of Eulerian hydrodynamic equations and by way of several numerical methods: FLIC, Godunov's scheme, TVD, and PPM. The influence of viscosity on the development of the vortical regime has been studied by computer solving the Navier–Stokes equations. Received 21 August 1998 / Accepted 6 June 2001  相似文献   

12.
Two-dimensional hypersonic rarefied gas flow around blunt bodies is investigated for the continuum to free-molecular transition regime. In [1], as a result of an asymptotic analysis, three rarefied gas flow regimes, depending on the relationship between the problem parameters, were detected and one of these regimes was investigated. In the present study, asymptotic solutions of the thin viscous shock layer equations at small Reynolds numbers are obtained for the other two flow regimes. Analytical expressions for the heat transfer, friction and pressure coefficients are obtained as functions of the incident flow parameters and the body geometry and temperature. As the Reynolds number tends to zero, the values of these coefficients approach their values in free-molecular flow. The scaling parameters of hypersonic rarefied gas flow around bodies are determined for different regimes. The asymptotic solutions are compared with the results of direct Monte Carlo simulation.  相似文献   

13.
Summary A numerical scheme is presented which employs the characteristic surfaces in space-time for solving Navier-Stokes equations for compressible fluid flow. We consider the general case of a three-dimensional flow, a simplification of which yields the equations of the two-dimensional case. Emphasis is put on the method itself. We apply it to simulate a laminar hypersonic flow around a circular cylinder of a five-components gas mixture of nitrogen and oxygen with thermally perfect constituents and at chemical nonequilibrium. First, the partial differential equations are transformed into a standard form with directional derivatives, enabling to attain the compatibility conditions, including the viscosity terms. These conditions are discretized by approximating their integrals along the corresponding characteristic surfaces. The result is an explicit time-marching numerical scheme. Using a grid fitted between the shock and the cylinder, and starting from roughly estimated initial conditions, a steady solution is searched. A comparison is made with the solution obtained under the assumption of a perfect gas. Received 6 April 1999; accepted for publication 13 May 1999  相似文献   

14.
We study planar shock wave structure in a two-temperature model of a fully ionized plasma that includes electron heat conduction and energy exchange between electrons and ions. For steady flow in a reference frame moving with the shock, the model reduces to an autonomous system of ordinary differential equations which can be numerically integrated. A phase space analysis of the differential equations provides an additional insight into the structure of the solutions. For example, below a threshold Mach number, the model produces continuous solutions, while above another threshold Mach number, the solutions contain embedded hydrodynamic shocks. Between the threshold values, the appearance of embedded shocks depends on the electron diffusivity and the electron–ion coupling term. We also find that the ion temperature may achieve a maximum value between the upstream and downstream states and away from the embedded shock. We summarize the methodology for solving for two-temperature shocks and show results for several values of shock strength and plasma parameters in order to quantify the shock structure and explore the range of possible solutions. Such solutions may be used to verify hydrodynamic codes that use similar plasma physics models.  相似文献   

15.
We calculate the quasi-stationary structure of a radiating shock wave propagating through a spherically symmetric shell of cold gas by solving the time-dependent equations of radiation hydrodynamics on an implicit adaptive grid. We show that this code successfully resolves the shock wave in both the subcritical and supercritical cases and, for the first time, we have reproduced all the expected features – including the optically thin temperature spike at a supercritical shock front – without invoking analytic jump conditions at the discontinuity. We solve the full moment equations for the radiation flux and energy density, but the shock wave structure can also be reproduced if the radiation flux is assumed to be proportional to the gradient of the energy density (the diffusion approximation), as long as the radiation energy density is determined by the appropriate radiative transfer moment equation. We find that Zel'dovich and Raizer's (1967) analytic solution for the shock wave structure accurately describes a subcritical shock but it underestimates the gas temperature, pressure, and the radiation flux in the gas ahead of a supercritical shock. We argue that this discrepancy is a consequence of neglecting terms which are second order in the minimum inverse shock compression ratio [, where is the adiabatic index] and the inaccurate treatment of radiative transfer near the discontinuity. In addition, we verify that the maximum temperature of the gas immediately behind the shock is given by , where is the gas temperature far behind the shock. Received 21 September 1998/ Accepted 2 February 1999  相似文献   

16.

The motivation of the present study is to derive the solution of the Riemann problem for modified Chaplygin gas equations in the presence of constant external force. The analysis leads to the fact that in some special circumstances delta shock appears in the solution of the Riemann problem. Also, the Rankine–Hugoniot relations for delta shock wave which are utilized to determine the strength, position and propagation speed of the delta shocks have been derived. Delta shock wave solution to the Riemann problem for the modified Chaplygin gas equation is obtained. It is found that the external force term, appearing in the governing equations, influences the Riemann solution for the modified Chaplygin gas equation.

  相似文献   

17.
Rarefied gas flow with a centered isentropic compression wave is investigated using direct Monte Carlo simulation of the solution of the Boltzmann equation. For monatomic gas flow the pattern of formation of a suspended compression shock near the geometric center of the compression wave is considered. The flow pattern is compared with the results obtained within the framework of gas dynamics. For a diatomic gas the interference of a centered compression wave with the bow shock ahead of a cylinder is investigated. The dependence of the pressure and the heat transfer to the surface on the Reynolds number and the wave center position relative to the cylinder center is analyzed. The results are compared with those of numerical simulation of the Euler and boundary-layer equations.  相似文献   

18.
The interaction of a two-phase flow with a wedge where a stationary shock wave is initially settled is studied in a two-dimensional configuration. Before the introduction of the dispersed phase, the flow around the wedge is a supersonic one phase flow such as an attached stationary shock wave is present. Then, the dispersed phase is introduced upstream the initial position of the stationary shock wave. The purpose of this study is to point out two-phase and droplets break-up effects on the oblique shock wave. The two-dimensional equations are solved by a TVD scheme where fluxes are computed by using Riemann solver for the gas phase equations and also for the dispersed phase equations wich is an original approach due to the authors (Saurel et al. 1994). In addition to drag forces and heat and mass transfers, the process of droplets fragmentation based on the particle oscillation is considered. Accepted April 28, 1995  相似文献   

19.
The influence of the nitrogen dissociation on the interactions due to the interference of two planar shock waves in a hypersonic high enthalpy flow is theoretically investigated for infinite reaction rates. The two limiting cases of infinitely slow and infinitely fast reactions are modelled as a perfect gas and an ideal dissociating gas in chemical equilibrium.To investigate the influence of finite reaction rates on the interactions of shock waves, experiments are performed in the high enthalpy shock tunnel Göttingen (HEG) with a wind tunnel model consisting of a wedge type shock generator and a transversally mounted cylinder. The pressure and heat transfer loads resulting from the shock wave interferences are measured and the flow field is visualized by means of interferograms. The experimental results are compared with the results of a numerical simulation for a dissociating nitrogen flow and with the experimental results for a perfect gas flow.  相似文献   

20.
Using the Maxwell method, transfer equations describing molecular gas flows in viscous shock and hypersonic boundary layers are obtained. It is shown that, in contrast to the Navier-Stokes approximation, the kinetic model proposed makes it possible correctly to describe hypersonic flow around bodies under conditions of strong nonequilibrium of the internal and translational degrees of freedom of the gas particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号