首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In multi-analyte procedures, sufficient separation is important to avoid interferences, particularly when using liquid chromatography/mass spectrometry (LC/MS) because of possible ion suppression or enhancement. However, even using ultra-high-performance LC, baseline separation is not always possible. For development and validation of an LC/MS/MS approach for quantification of 140 antidepressants, benzodiazepines, neuroleptics, beta-blockers, oral antidiabetics, and analytes measured in the context of brain death diagnosis in plasma, the extent of ion suppression or enhancement of co-eluting analytes within and between the drug classes was investigated using atmospheric-pressure chemical ionization (APCI) or electrospray ionization (ESI). Within the drug classes, five analytes showed ion enhancement of over 25% and six analytes ion suppression of over 25% using APCI and 16 analytes ion suppression of over 25% using ESI. Between the drug classes, two analytes showed ion suppression of over 25% using APCI. Using ESI, one analyte showed ion enhancement of over 25% and five analytes ion suppression of over 25%. These effects may influence the drug quantification using calibrators made in presence of overlapping and thus interfering analytes. Ion suppression/enhancement effects induced by co-eluting drugs of different classes present in the patient sample may also lead to false measurements using class-specific calibrators made in absence of overlapping and thus interfering analytes. In conclusion, ion suppression and enhancement tests are essential during method development and validation in LC/MS/MS multi-analyte procedures, with special regards to co-eluting analytes.  相似文献   

2.
Ion suppression is a well-known phenomenon in electrospray ionization (ESI) mass spectrometry. These suppression effects have been shown to adversely affect the accuracy and precision of quantitative bioanalytical methods using ion spray. Such suppression effects have not been as well defined in atmospheric pressure chemical ionization (APCI) and there is some debate whether these effects actually occur in the ionization process using APCI. Here an example is described where clear ion suppression was observed during studies on a model compound and three metabolites using APCI liquid chromatography/tandem mass spectrometry (LC/MS/MS).  相似文献   

3.
Alternative ionization methods are increasingly being utilized to increase the versatility and selectivity of liquid chromatography/mass spectrometry (LC/MS). One such technique is the practice of using commercially available atmospheric pressure chemical ionization (APCI) sources with the corona discharge turned off, a process termed no-discharge APCI (ND-APCI). The relative LC/MS responses for several different classes of veterinary drugs were obtained by using ND-APCI, electrospray ionization (ESI), and APCI. While the ND-APCI-MS and -MSn spectra for these compounds were comparable with ESI, ND-APCI provided advantages in sensitivity and selectivity for some compounds. Drugs that were charged in solution as cations or sodium adducts responded particularly well with this technique. Instrumental parameters such as temperatures, gas and liquid flow rates, and source design were investigated to determine their effect on the process of ND-APCI. This paper explores advantages of using ND-APCI for the determination and confirmation of drug residues that might be found in food matrices, including malachite green residues in fish tissue and avermectin residues in milk.  相似文献   

4.
In clinical and forensic toxicology, multi‐analyte procedures are very useful to quantify drugs and poisons of different classes in one run. For liquid chromatographic/tandem mass spectrometric (LC/MS/MS) multi‐analyte procedures, often only a limited number of stable‐isotope‐labeled internal standards (SIL‐ISs) are available. If an SIL‐IS is used for quantification of other analytes, it must be excluded that the co‐eluting native analyte influences its ionization. Therefore, the effect of ion suppression and enhancement of fourteen SIL‐ISs caused by their native analogues has been studied. It could be shown that the native analyte concentration influenced the extent of ion suppression and enhancement effects leading to more suppression with increasing analyte concentration especially when electrospray ionization (ESI) was used. Using atmospheric‐pressure chemical ionization (APCI), methanolic solution showed mainly enhancement effects, whereas no ion suppression and enhancement effect, with one exception, occurred when plasma extracts were used under these conditions. Such differences were not observed using ESI. With ESI, eleven SIL‐ISs showed relevant suppression effects, but only one analyte showed suppression effects when APCI was used. The presented study showed that ion suppression and enhancement tests using matrix‐based samples of different sources are essential for the selection of ISs, particularly if used for several analytes to avoid incorrect quantification. In conclusion, only SIL‐ISs should be selected for which no suppression and enhancement effects can be observed. If not enough ISs are free of ionization interferences, a different ionization technique should be considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A comparative study of three atmospheric-pressure ionization (API) sources for liquid chromatography/mass spectrometry (LC/MS), namely pneumatically assisted electrospray or ionspray (IS), atmospheric-pressure chemical ionization (APCI), and sonic spray (SS), with respect to the influence of the eluent composition on the ionization of morphine, is presented. The effect of organic modifiers, volatile acids, and buffer systems (with and without pH adjustment) in the LC mobile phase on the ionization efficiency of each interface is described. We conclude that for all three ion sources, the composition of the liquid phase had a serious impact on the ionization of the target compound. For IS and SS, very similar behavior towards the LC eluent was observed. In both cases, an increase in organic modifier resulted in an increase in ionization, while an increasing amount of volatile acid or buffer caused signal suppression. APCI, on the other hand, proved to respond completely differently towards the changes in the eluent. Again, an increased ionization was observed with an increase in organic modifier content but this time also in the presence of mobile phase additives like acids or buffers. Finally, we concluded that APCI proved to be the preferred ion source for the test compound because of its robust character and its direct applicability in traditional LC analysis.  相似文献   

6.
Gas chromatography/mass spectrometry (GC/MS) is applied to the analysis of volatile and thermally stable compounds, while liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI‐MS) and liquid chromatography/electrospray ionization mass spectrometry (LC/ESI‐MS) are preferred for the analysis of compounds with solution acid‐base chemistry. Because organic explosives are compounds with low polarity and some of them are thermally labile, they have not been very well analyzed by GC/MS, LC/APCI‐MS and LC/ESI‐MS. Herein, we demonstrate liquid chromatography/negative ion atmospheric pressure photoionization mass spectrometry (LC/NI‐APPI‐MS) as a novel and highly sensitive method for their analysis. Using LC/NI‐APPI‐MS, limits of quantification (LOQs) of nitroaromatics and nitramines down to the middle pg range have been achieved in full MS scan mode, which are approximately one order to two orders magnitude lower than those previously reported using GC/MS or LC/APCI‐MS. The calibration dynamic ranges achieved by LC/NI‐APPI‐MS are also wider than those using GC/MS and LC/APCI‐MS. The reproducibility of LC/NI‐APPI‐MS is also very reliable, with the intraday and interday variabilities by coefficient of variation (CV) of 0.2–3.4% and 0.6–1.9% for 2,4,6‐trinitrotoluene (2,4,6‐TNT). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The capabilities of atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) methods for quantitative analysis of polar and ionic compounds in petroleum fractions have been examined. The requirements of the analysis for sensitivity, linear dynamic range, and structural characterization have been discussed. ESI was found to be approximately two orders of magnitude more sensitive than APCI and is most suitable for the detection of analytes in weak concentrations. Equivalent relative linear dynamic ranges were observed by the two methods (at least three orders of magnitude). For the relatively high analyte concentrations examined here (e.g., 1-100 ppm or higher), the absolute area counts increased linearly with the analyte amount only in APCI, making this method more attractive for quantitative liquid chromatography/mass spectrometry (LC/MS) applications. Nevertheless, a wider range of ionic compounds can be detected by ESI than by APCI.  相似文献   

8.
Attachment of anions to sorbitol and fructose has been shown to enhance sensitivity in both electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) mass spectrometry. The post-column addition of CHCl3 produced Cl-adducts of sorbitol and fructose but their signals were suppressed due to the elevated background. Different chlorinated compounds and different additive methods were systematically investigated to form more abundant Cl-adduct precursor ions and deprotonated product ions. The major causes of the high background were explored and effective methods were developed to improve the signal-to-noise ratios and reproducibility. The compositions of mobile phase, percentages of organic modifiers (MeCN, MeOH and water), columns, oven temperature, flow rates and different gradients were investigated to separate sorbitol from fructose along with their isomers including glucose, galactose, mannose, sorbose, mannitol, and dulcitol. The optimized separation was achieved on a Luna 5 mu NH2 100A column (150 x 4.6 mm) using a mobile phase containing MeCN with 0.1% of CH2Cl2 and 50% MeOH in water at a flow rate of 800 microL/min and an oven temperature of 40 degrees C using a gradient liquid chromatography (LC) system. Human nerve tissue samples were extracted by protein precipitation followed by mixed-mode solid-phase extraction. The LC/ESI-MS/MS method produced higher peak intensities than LC/APCI-MS/MS. However, there were matrix effects from extracted tissues in LC/ESI-MS/MS but not in LC/APCI-MS/MS. Consequently, APCI proved to be the more effective method of ionization. Then the LC/APCI-MS/MS method was fully validated and successfully applied to analysis of clinical samples. The concentrations of endogenous sorbitol and fructose were determined using calibration curves employing sorbitol-13C6 and fructose-13C6 as surrogate analytes. The method has provided excellent intra- and inter-assay precision and accuracy with linear ranges of 0.2-80 ng/mg for sorbitol and 1-400 ng/mg for fructose in human nerve tissues.  相似文献   

9.
A sonic spray ionization liquid chromatography/mass spectrometry (LC/SSI-MS) procedure combined with off-line solid-phase extraction was optimized for the analysis of 20 endocrine-disrupting chemicals (EDCs) in water samples. Method development included a comparison of the novel sonic spray ionization (SSI) with more traditional ion sources, i.e. pneumatically assisted electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). It was demonstrated that SSI and ESI spectra were very similar, but were more prone to the formation of solvent cluster ions as compared with APCI spectra. This phenomenon was most prominent for SSI and resulted in an increased chemical background in full-scan mass spectra. However, this chemical noise did not affect the overall sensitivity of SSI and ESI. After optimization of LC and MS parameters, the LC/SSI-MS method was validated. Recoveries ranged from 76.3 up to 113.4% for all compounds. Limits of detection (LOD) and quantitation (LOQ) were established between 3.0 and 11.5 ng/L and 9.9 and 38.0 ng/L, respectively. Within-day (n = 5) and between-day (n = 5) reproducibility were investigated at three levels and ranged from 3.3-16.5% and 7.6-19.2%, respectively. Eight-point calibration curves were established and showed linearity for all compounds (r(2) > 0.987) over a linear dynamic range of 10-10 000 ng/L.  相似文献   

10.
Hydroxylated polybrominated diphenyl ether (OH‐PBDEs) metabolites have the potential to cause endocrine disruption as well as other health effects. Currently, gas chromatography/mass spectrometry (GC/MS) after derivatization is used for the analysis of OH‐PBDEs. However, there is a need for the direct analysis of OH‐PBDEs at relatively low concentrations in environmental and biological samples. Liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry (LC/APCI‐MS/MS) was evaluated for the analysis of nine OH‐PBDEs, ranging from tri‐ to hexabrominated. Separation of the nine isomeric metabolites was achieved with reversed‐phase liquid chromatography, followed by detection by APCI‐MS in negative mode. Notably, a significant decrease in ionization was observed in 6‐hydroxyl‐substituted PBDE metabolites in the presence of an ortho‐substituted bromine, relative to the other hydroxylated metabolites. This is probably due to the formation of dioxins in the source as a result of the high‐temperature conditions, which prevented ionization by hydrogen abstraction. The MS/MS experiments also provided evidence of the neutral losses of HBr and Br2, indicating the possible use of neutral loss scanning and selected reaction monitoring (SRM) for the screening of brominated metabolites in samples. The applicability of LC/APCI‐MS/MS was demonstrated for the analysis of metabolites of BDEs 47 and 99 formed in human liver microsomes. The LC/APCI‐MS/MS method was able to detect metabolites that had previously been identified by GC/MS following derivatization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A fast, simple and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of acetylcholine in rat brain microdialysis samples. The chromatographic separation was achieved in 3 min on a reversed-phase column with isocratic conditions using a mobile phase containing 2% (v/v) of acetonitrile and 0.05% (v/v) of trifluoroacetic acid (TFA). A stable isotope-labeled internal standard was included in the analysis and detection was carried out with a linear ion trap mass spectrometer using selected reaction monitoring (SRM). Analyte ionization was performed with an atmospheric pressure chemical ionization (APCI) source without applying discharge current (atmospheric pressure spray ionization). This special ionization technique offered significant advantages over electrospray ionization for the analysis of acetylcholine with reversed-phase ion-pairing chromatography. The lower limit of quantification was 0.15 nM (1.5 fmol on-column) and linearity was maintained over the range of 0.15-73 nM, providing a concentration range that is significantly wider than that of the existing LC/MS methods. Good accuracy and precision were obtained for concentrations within the standard curve range. The method was validated and has been used extensively for the determination of acetylcholine in rat brain microdialysis samples.  相似文献   

12.
Hydroperoxides formed by autoxidation of common fragrance terpenes are strong allergens and known to cause allergic contact dermatitis (ACD), a common skin disease caused by low molecular weight chemicals. Until now, no suitable methods for chemical analyses of monoterpene hydroperoxides have been available. Their thermolability prohibits the use of gas chromatography and their low UV-absorption properties do not promote sensitive analytical methods by liquid chromatography based on UV detection. In our study, we have investigated different liquid chromatography/mass spectrometry (LC/MS) ionization techniques, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI), for detection of hydroperoxides from linalool and limonene.Flow injection analysis was used to evaluate the three different techniques to ionize the monoterpene hydroperoxides, linalool hydroperoxide and limonene hydroperoxide, by estimating the signal efficacy under experimental conditions for positive and negative ionization modes. The intensities for the species [M+H]+ and [M+H-H2O]+ in positive ionization mode and [M-H]- and [M-H-H2O]- in negative ionization mode were monitored. It was demonstrated that the mobile phase composition and instrumental parameters have major influences on the ionization efficiency of these compounds. ESI and APCI were both found to be appropriate as ionization techniques for detection of the two hydroperoxides. However, APPI was less suitable as ionization technique for the investigated hydroperoxides.  相似文献   

13.
The objective of this study is the measurement of leukotriene B7 (LTB4), a potent inflammatory mediator, in exhaled breath condensate by using liquid chromatography/mass spectrometry (LC/MS and LC/MS/MS). Condensation of exhaled breath is a non-invasive method to collect airway secretions. Deuterated (d4)-LTB4 was used as internal standard. The MS and MS/MS behavior of LTB4 and LTB4-d4 was studied by electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive and negative ion polarity mode. Preliminary results show that monitoring negative ions in ESI mode has the best sensitivity for both LTB4 and LTB4-d4. Therefore, negative ESI was chosen, and the [M-H]- ions at m/z 335 and 339 were selected for quantification. The lower limit of quantification for LTB4, expressed as the lowest point of the calibration curve, was 100 pg/mL. Using this technique, we measured LTB4 in exhaled breath condensate in two healthy subjects, four asthmatic patients on anti-inflammatory treatment, and four asthmatic patients who were not on anti-inflammatory drugs. Exhaled LTB4 concentrations were detected only in asthmatic patients who were not on anti-inflammatory therapy. This method is potentially useful for non-invasive assessment of airway inflammation, but the sensitivity of the technique needs to be improved.  相似文献   

14.
Steroid sex hormones and related synthetic compounds have been shown to provoke alarming estrogenic effects in aquatic organisms, such as feminization, at very low concentrations (ng/L or pg/L). In this work, different chromatographic techniques, namely, gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS), are discussed for the analysis of estrogens, both free and conjugated, and progestogens, and the sensitivities achieved with the various techniques are inter-compared. GC/MS analyses are usually carried out after derivatization of the analytes with bis(trimethylsilyl)trifluoroacetamide (BSTFA). For LC/MS and LC/MS/MS analyses, different instruments, ionization techniques (electrospray (ESI) and atmospheric pressure chemical ionization (APCI)), ionization modes (negative ion (NI) and positive ion (PI)) and monitoring modes (selected ion monitoring (SIM) and selected reaction monitoring (SRM)) are generally employed. Based on sensitivity and selectivity, LC/ESI-MS/MS is generally the method of choice for determination of estrogens in the NI mode and of progestogens in the PI mode (instrumental detection limits (IDLs) 0.1-10 ng/mL). IDLs achieved by LC/ESI-MS in the SIM mode and by LC/ESI-MS/MS in the SRM mode were, in general, comparable, although the selectivity of the latter is significantly higher and essential to avoid false positive determinations in the analysis of real samples. Conclusions and future perspectives are outlined.  相似文献   

15.
The effect of nine different eluent compositions on the ionization efficiency of five flavonoids was studied using ion spray (IS), atmospheric pressure chemical ionization (APCI), and the novel atmospheric pressure photoionization (APPI), in positive and negative ion modes. The eluent composition had a great effect on the ionization efficiency, and the optimal ionization conditions were achieved in positive ion IS and APCI using 0.4% formic acid (pH 2.3) as a buffer, and in negative ion IS and APCI using ammonium acetate buffer adjusted to pH 4.0. For APPI work, the eluent of choice appeared to be a mixture of organic solvent and 5 mM aqueous ammonium acetate. The limits of detection (LODs) were determined in scan mode for the analytes by liquid chromatography/mass spectrometry using IS, APCI and APPI interfaces. The results show that negative ion IS with an eluent system consisting of acidic ammonium acetate buffer provides the best conditions for detection of flavonoids in mass spectrometry mode, their LODs being between 0.8 and 13 microM for an injection volume of 20 microl.  相似文献   

16.
Atmospheric pressure photoionization (APPI) is a novel method of ionization in liquid chromatography/mass spectrometry (LC/MS). It was originally developed in order to broaden the range of LC/MS ionizable compounds towards less polar compounds that cannot be analyzed by electrospray (ESI) and atmospheric pressure chemical ionization (APCI). Studies done thus far have shown that non-polar compounds that earlier were not ionizable in LC/MS can indeed be ionized by the use of APPI. However, the best ionization efficiency for low polarity samples has been achieved with low proton affinity (PA) solvents that are not suitable in reversed-phase LC (RP-LC). Here it is demonstrated that the signals for analytes with low proton affinities in acetonitrile can be increased 100-fold by using anisole as the dopant for APPI, which takes the sensitivity to the same level achieved in the analysis of high PA analytes.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) with four to six rings are potent carcinogens. This study analyzed ten of the sixteen US EPA priority PAHs using reversed-phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) in selected reaction monitoring mode with two ionization sources: positive atmospheric pressure chemical ionization (APCI+) or positive elecrtrospray ionization (ESI+) with tropylium post-column derivatization. Several factors were investigated, including mobile phases, stationary phases of columns and chromatographic temperature, to determine how optimal separation and sensitivity might be achieved. Methanol used as an organic mobile phase provided better sensitivities for most PAHs than acetonitrile, although some PAHs co-eluted. Acidic buffers did not increase analyte signals. Use of Restek Pinnacle II PAH columns (250 x 4.6 mm or 250 x 2.1 mm, 5 microm) with water/acetonitrile gradient at 27 degrees C made possible a good separation of the ten analytes. [M]+. were the best precursor ions in both APCI and ESI, although fluoranthene could not be detected in ESI mode when tropylium post-column derivatization was performed. [M-28]+ and [M-52]+ were the major product ions of PAHs after collision-induced dissociation, a result of neutral losses of C(2)H(4) and (C(2)H(2))(2), respectively. Chromatographic separation for PAH isomers was crucial because the mass spectra were so similar that even MS/MS could not distinguish them from each other. The recoveries of sample preparations of PAHs spiked onto air-sampling filters ranged between 77.5 and 106% with relative standard deviations between 1.1 and 15.9%. This method was validated by analyzing NIST SRM 1649a (urban dust), producing results comparable with the certified PAH concentrations. The detection limits using APCI and ESI interfaces, defined as three times the noise levels, ranged between 0.23 and 0.83 ng and between 0.16 and 0.84 ng of on-column injection, respectively.  相似文献   

18.
Liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in the positive and negative ion modes was used for the characterization of a block copolymer consisting of methoxy poly(ethylene oxide) (mPEO), an epsilon-caprolactone (CL) segment and linoleic acid (LA), used as surfactant in water-based latex paints. Chromatographic separation was obtained based on the number of CL units in the polymer species and the presence of an mPEO and/or LA tail. Different ionization methods were found to be complementary and only their combination allowed the qualitative profiling of the chemical composition. The LC/MS method has proven valuable for following the reaction in time, as well as for comparison of different polymeric surfactants.  相似文献   

19.
1 Introduction Gaschromatography/massspectrometry (GC/MS)andliquidchromatography/massspectrometry (LC/MS) ,representativesofthehyphenatedtechniques ,aresomeofthemostreliableanalyticalmethods ,whicharethesynergisticcombinationoftwopowerfulanalyticaltechniques;…  相似文献   

20.
The applicability of liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the detection of the free anabolic steroid fraction in human urine was examined. Electrospray ionization (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization methods were optimized regarding eluent composition, ion source parameters and fragmentation. The methods were compared with respect to specificity and detection limit. Although all methods proved suitable, LC/ESI-MS/MS with a methanol-water gradient including 5 mM ammonium acetate and 0.01% acetic acid was found best for the purpose. Multiple reaction monitoring allowed the determination of steroids in urine at low nanogram per milliliter levels. LC/MS/MS exhibited high sensitivity and specificity for the detection of free steroids and may be a suitable technique for screening for the abuse of anabolic steroids in sports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号