首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
The synthesis of the three isomeric tris(pyridylmethylamino)cyclotriguaiacylene cavitands is reported, along with the crystal structures of the 2- and 4-pyridyl derivatives. The generality of a previously described [Ag(2){tris(3-pyridylmethylamino)cyclotriguaiacylene}(2)](2+) dimeric capsule motif and the [Ag(4){tris(4-pyridylmethylamino)cyclotriguaiacylene}(4)](4+) tetrahedron with several silver salts was confirmed in the solid state and the corresponding solution species were investigated by NMR spectroscopy. Host-guest interactions in these systems have been probed and these interactions are demonstrated to alter and influence the self-assembly outcome of the reaction. Notably, introduction of larger glutaronitrile guest molecules to the [Ag(4)L(4)](4+) tetrahedron system prevents formation of the tetrahedral structure, resulting instead in the formation of a 4.8(2) coordination network in the solid state. In the absence of templating acetonitrile guests in the [Ag(2)(3)(2)](2+) capsule system, formation of a cage-based one-dimensional coordination polymer is observed.  相似文献   

2.
Herein we describe the importance of side chains in C3-symmetric ligands in supramolecular chemistry. The reaction of the new ligand tris(5-bromo-2-methoxybenzylidene)triaminoguanidinium chloride [H3Me3Br3L]Cl (1) with ZnCl2 results in the formation of the monomeric complex (Et3NH)2[(ZnCl2)3Me3Br3L] (2), in which the ligand remains in a conformation less favourable for the coordination of metal centres. The use of the related tris(5-bromo-2-hydroxybenzylidene)triaminoguanidinium chloride, [H6Br3L]Cl, under similar conditions, results in the formation of two different dimeric compounds (NH4)[{[Zn(NH3)]3Br3L}2{mu-(OH)}3]1/4MeOH (3) and [Zn{Zn2(OH2)3(NH3)Br3L}2] (4), depending on the solvent mixture used. The comparable reaction of the ligand tris(5-bromo-2-hydroxy-3-methoxybenzylidene)triaminoguanidinium chloride [H6(OMe)3Br3L]Cl (5), leads to the formation of a doughnut-shaped, protein-sized coordination oligomer (Et3NH)18[{Zn[Zn2Cl{(OMe)3Br3L}]2}6(mu-Cl)6(OH2)6]x CH3CN (6), which comprises six dimeric [Zn5{(OMe)3Br3L}2] units. Whereas 3 and 4 decompose in DMSO solution, 6 is surprisingly stable in the same solvent.  相似文献   

3.
A series of new 1D chain and 2D coordination polymers with cyclotriguaiacylene-type ligands are reported. A zig-zag 1D coordination chain is found in complex [Cd(2)(4ph4py)(NO(3))(3)(H(2)O)(2)(DMA)(2)]·(NO(3))·(DMA)(4), where 4ph4py = tris[4-(4-pyridyl)benzoyl]-cyclotriguaiacylene and DMA = dimethylacetamide, while complex [Zn(4ph4py)(2)(CF(3)COO)(H(2)O)]·(CF(3)COO)(NMP)(7), where NMP = N-methylpyrrolidone, has a doubly bridged coordination chain structure. Complexes [M(3ph3py)(NO(3))(2)]·(NMP)(4) where M = Co or Zn, 3ph3py = tris[3-(3-pyridyl)benzoyl]cyclotriguaiacylene, are isostructural and feature 1D ladder coordination chains. Complexes [Cd(2)(4ph4py)(2)(NO(3))(4)(NMP)]·(NMP)(9)(H(2)O)(4) and [Co(4ph4py)(H(2)O)(2)]·(NO(3))(2)·(DMF)(2), where DMF = dimethylformamide, both have (3,4)-connected 2D coordination polymers with a rare (4(2).6(2))(4.6(2))(2) topology. A 2D coordination polymer with this topology is also found in complex [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)]·(NO(3))(3)·(DMF)(9) where 3ph4py = tris[3-(4-pyridyl)benzoyl]cyclotriguaiacylene. All 2D coordination polymer complexes are interpenetrating or polycatenating. [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)](3+)polymers form a 2D→3D polycatenation showing self-complementary "hand-shake" interactions between the host-type ligands.  相似文献   

4.
A new series of different nuclearity silver(I) complexes with a variety of tetracyano pendant-armed hexaazamacrocyclic ligands containing pyridine rings (Ln) has been prepared starting from the nitrate and perchlorate Ag(I) salts in acetonitrile solutions. The ligands and complexes were characterized by microanalysis, conductivity measurements, IR, Raman, electronic absorption and emission spectroscopy, and L-SIMS spectrometry. (1)H NMR titrations were employed to investigate silver complexation by ligands L3 and L.(4) The compounds [Ag2L2(NO3)2] (2), ([Ag2L2](ClO4)2.2CH3CN)(infinity) (4), [AgL3](ClO(4)).CH3CN (5), and [Ag4(L4)2(NO3)2](NO3)2.4CH3CN.2H2O (7) were also characterized by single-crystal X-ray diffraction. The complexes have different nuclearities. Complex 2 is dinuclear with an {AgN3O2} core and a significant intermetallic interaction, whereas complex 4 has a polymeric structure formed by dinuclear distorted {AgN4} units joined by nitrile pendant arms. Compound 5 is mononuclear with a distorted {AgN2} linear geometry, and complex 7 consists of discrete units of a tetranuclear array of silver atoms with {AgN3O} and {AgN4} cores in distorted square planar environments. Complexes 2 and 4 were found to be fluorescent in the solid state at room temperature because of the Ag-Ag interactions.  相似文献   

5.
A new series of silver complexes, [AgL], of the anionic forms of potentially bidentate N-2-pyridyl sulfonamide ligands [N-(3-methyl-2-pyridyl)-p-toluenenesulfonamide (HTs3mepy), N-(3-methyl-2-pyridyl)mesitylenesulfonamide (HMs3mepy), N-(4-methyl-2-pyridyl)-p-toluenesulfonamide (HTs4mepy), and N-(6-methyl-2-pyridyl)mesitylenesulfonamide (HMs6mepy)] have been prepared by an electrochemical procedure. In addition, heteroleptic complexes of composition [AgLL'] (L' = 1,10-phenanthroline and 2,2'-bipyridine) were obtained when the coligand L' was added to the electrolytic phase. The complexes were characterized by microanalysis, IR and (1)H NMR spectroscopy, and LSI mass spectrometry. In the cases of the compounds [Ag(Ts3mepy)](n)() (1), [Ag(4)(Ms3mepy)(4)] (2a), [Ag(Ms3mepy)](n)() (2b), [Ag(4)(Ms6mepy)(4)] (3a), [Ag(2)(Ms6mepy)(2)](n)() (3b), [Ag(2)(Ms3mepy)(2)(phen)(2)] (5), [Ag(2)(Ms6mepy)(2)phen] (7), and [Ag(2)(Ts4mepy)(2)(bipy)(2)] (8), characterization was also carried out by single-crystal X-ray diffraction. Compounds 1 and 2b present a polymer structure formed by an {AgN(2)} digonal core. Compounds 2a and 3a are tetranuclear and also have a distorted {AgN(2)} digonal core. Compound 3b is based on binuclear distorted {AgN(2)} digonal units joined by an intermolecular sulfonyl oxygen atom to produce a stairlike polymer structure. The heteroleptic complexes 5 and 8 are dimeric with a distorted {AgN(4)} tetrahedral geometry, while compound 7 shows two different geometries around the metal, distorted {AgN(2)} digonal and {AgN(4)} tetrahedral. The supramolecular structures of all species are organized by pi,pi-stacking, C-H...pi, or C-H...O interactions.  相似文献   

6.
Cyclic trinuclear complexes [Pd(3)(mu-pz)(6)] (1) and [Pd(3)(mu-4-Mepz)(6)] (2) and dinuclear complex [Pd(2)(mu-3-t-Bupz)(2)(3-t-Bupz)(2)(3-t-BupzH)(2)] (3) have been prepared by the reactions of [PdCl(2)(CH(3)CN)(2)] with pyrazole (pzH), 4-methylpyrazole (4-MepzH), and 3-tert-butylpyrazole (3-t-BupzH), respectively, in CH(3)CN in the presence of Et(3)N. In the absence of the base, treatment of [PdCl(2)(CH(3)CN)(2)] with pzH gave the mononuclear complex, [Pd(pzH)(4)]Cl(2) (6). The reaction of [PtCl(2)(C(2)H(5)CN)(2)] with pzH in the presence of Et(3)N under refluxing in C(2)H(5)CN afforded the known dimeric Pt(II) complex, [Pt(pz)(2)(pzH)(2)](2) (7). The protons participating in the hydrogen bonding in 3 and 7 are easily replaced by silver ions to give the heterotetranuclear complex [Pd(2)Ag(2)(mu-3-t-Bupz)(6)] (4) and the heterohexanuclear complex [Pt(2)Ag(4)(mu-pz)(8)] (5). The complexes 1-6 are structurally characterized.  相似文献   

7.
In non-competitive solvents, the tris(3-ureidobenzyl)amines 1 a-c form dimeric assemblies in which guests such as CH(3)CN, CH(3)NO(2), CH(2)Cl(2), CH(3)I, CH(2)BrCl, CH(2)Br(2), CHCl(3) and C(6)H(6) can be encapsulated. Variable temperature (1)H and (1)H,(1)H-ROESY NMR spectroscopy, as well as pulsed-gradient spin-echo (PGSE) diffusion measurements were used to investigate the encapsulation within 1 a1 a (1 a: tris{3-[N'-(4-butylphenyl)ureido]benzyl}amine). Kinetic parameters for the encapsulation of CH(3)NO(2), CH(2)Cl(2) and CH(3)I, both in CDCl(3) and in [D(8)]toluene have been obtained by using magnetisation transfer methods. These data are discussed together with the thermodynamic parameters. The affinity between guest and capsule seems to be dictated mainly by the electronic, size and shape complementarity between cavity and guest. A gating mechanism for guest exchange is proposed.  相似文献   

8.
The novel tripodal ligand N-(bis(2-pyridyl)methyl)-2-pyridinecarboxamide (Py3AH) affords monomeric and dimeric copper(II) complexes with coordinated carboxamido nitrogens. Although many chloro-bridged dimeric copper(II) complexes are known, [Cu(Py3A)(Cl)] (1) remains monomeric and planar with a pendant pyridine and does not form either a chloro-bridged dimer or the ligand-shared dimeric complex [Cu(Py3A)(Cl)]2 (4) in solvents such as CH3CN. When 1 is dissolved in alcohols, square pyramidal alcohol adducts [Cu(Py3A)(Cl)(CH3OH)] (2) and [Cu(Py3A)(Cl)(C2H5OH)] (3) are readily formed. In 2 and 3, the ROH molecules are bound at axial site of copper(II) and the weak axial binding of the ROH molecule is strengthened by intramolecular hydrogen bonding between ROH and the pendant pyridine nitrogen. Two ligand-shared dimeric species [Cu(Py3A)(Cl)]2 (4) and [Cu(Py3A)]2(ClO4)2 (5) have also been synthesized in which the pendant pyridine of one [Cu(Py3A)] unit completes the coordination sphere of the other [Cu(Py3A)] neighbor. These ligand-shared dimers are obtained in aqueous solutions or in complete absence of chloride in the reaction mixtures.  相似文献   

9.
As part of our interest in the design and reactivity of P,O ligands, and because the insertion chemistry of small molecules into a metal alkyl bond is very dependent on the ancillary ligands, the behavior of Pt-methyl complexes containing the beta-phosphonato-phosphine ligand rac-Ph2PCH(Ph)P(O)(OEt)2 (abbreviated PPO in the following) toward CO insertion has been explored. New, mononuclear Pt(II) complexes containing one or two PPO ligands, [PtClMe(kappa2-PPO)] (1), [Pt{C(O)Me}Cl(kappa2-PPO)] (2), [PtMe(CO)(kappa2-PPO)]OTf (3 x OTf), [PtMe(OTf)(kappa2-PPO)] (4), trans-[PtClMe(kappa1-PPO)2] (5), [PtMe(kappa2-PPO)(kappa1-PPO)]BF4 (6 x BF4), [PtMe(kappa2-PPO)(kappa1-PPO)]OTf (6 x OTf), and [Pt{C(O)Me}(kappa2-PPO)(kappa1-PPO)]BF4 (7 x BF4) have been prepared and characterized. Hemilability of the ligands is observed in the cations 6 and 7 in which the terminally bound and chelating PPO ligands exchange their role on the NMR time-scale. The acetyl complexes 2 and 7 are stable in solution, but the former deinserts CO upon chloride abstraction. We also demonstrate the ability of PPO to behave as an assembling ligand and to stabilize a heterometallic Pt-Ag metal complex, [PtMe(kappa2-PPO){mu-(eta1-P;eta1-O)PPO)}Ag(OTf)(Pt-Ag)]OTf (8 x OTf), which was obtained by reaction of 5 with AgOTf to generate more reactive, cationic complexes. Whereas the first equivalent of AgOTf abstracted the chloride ligand, the second equivalent added to the cationic complex with formation of a Pt-Ag bond (2.819(1) A). The complexes 1, 2, 4, 5 x CH2Cl2, and (8 x OTf)2 have been structurally characterized by single-crystal X-ray diffraction. The latter has a dimeric nature in the solid state, with two silver-bound triflates acting as bridging ligands between two Pt-Ag moieties. In addition to the Ag-Pt bond, the Ag+ cation is stabilized by a dative O -->Ag interaction involving one of the PPO ligands.  相似文献   

10.
Silver(I) coordination complexes with the versatile and biomimetic ligands 1,2,4-triazolo[1,5-a]pyrimidine (tp), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) and 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp) all feature dinuclear [Ag(2)(μ-tp)(2)](2+) building units (where tp is a triazolopyrimidine derivative), which are the preferred motif, independently of the counter-anion used. According to AIM (atoms in molecules) and ELF (electron localization function) analyses, this fact is due to the great stability of these dinuclear species. The complexes structures range from the dinuclear entities [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](BF(4))(2) (1), [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](ClO(4))(2) (2), [Ag(2)(μ-7atp)(2)](ClO(4))(2) (3) and [Ag(2)(μ-dmtp)(2)(CH(3)CN)](PF(6))(ClO(4)) (4) over the 1D polymer chain [Ag(2)(μ-CF(3)SO(3))(2)(μ-dmtp)(2)](n) (5) to the 3D net {[Ag(2)(μ(3)-tp)(2)](PF(6))(2)·~6H(2)O}(n) (6) with NbO topology.  相似文献   

11.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

12.
The addition of methanol and ethanol to the previously reported cluster solvates [Re6(mu3-Se)8(PEt3)5(MeCN)](SbF6)2 and trans-[Re6(mu3-Se)8(PEt3)4(CH3CN)2][SbF6]2 afforded three cluster complexes with imino ester ligands: {Re6(mu3-Se)8(PEt3)5[HN=C(OCH3)(CH3)]}(SbF6)2, {Re6(mu3-Se)8(PEt3)5[HN=C(OCH2CH3)(CH3)]}{SbF6}2, and trans-{Re6(mu3-Se)8(PEt3)4[HN=C(OCH3)(CH3)]2}{SbF6}2. In all cases, predominant formation of the Z isomers was observed.  相似文献   

13.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

14.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

15.
New (chalcogenoethyl)ferrocenylcarboxalate functionalized silver chalcogenide nanoclusters were synthesized using a combination of silylated chalcogen reagents at low temperatures. The addition of E(SiMe(3))(2) to reaction mixtures of FcC{O}OCH(2)CH(2)ESiMe(3) (E = S, Se) and (Ph(3)P)(2)·AgOAc affords nanoclusters with approximate molecular formulas [Ag(36)S(9)(SCH(2)CH(2)O{O}CFc)(18)(PPh(3))(3)] (1), [Ag(100)Se(17)(SeCH(2)CH(2)O{O}CFc)(66)(PPh(3))(10)] (2), and [Ag(180)Se(54)(SeCH(2)CH(2)O{O}CFc)(72)(PPh(3))(14)] (3) as noncrystalline solids. Compositions were formulated on the basis of elemental analysis, high resolution transmission electron microscopy, and dynamic light scattering experiments. Solutions of these polyferrocenyl assemblies display a single quasi-reversible redox wave with some adsorption to the electrode surface as studied by cyclic voltammetry. With the smaller clusters 1, the addition of [Bu(4)N][HSO(4)] results in a shift of the reduction wave to less positive potentials than those of the complex in the absence of these oxoanions. No further shift is observed after the addition of approximately 1 equivalent of HSO(4)(-)/ferrocene branch. Cyclic voltammograms of the larger clusters 2 and 3 show the appearance of a new, irreversible wave at less positive potentials than the initial wave upon the addition of HSO(4)(-). The appearance of this new wave together with the disappearance of the reduction wave indicates a stronger interaction between the nanoclusters and the hydrogen sulfate anion.  相似文献   

16.
The reactions of Na[C(5)(CN)(5)] (Na[1]) with group 11 phosphine complexes [(P)(n)MCl] (M = Cu, Ag, Au, P = Ph(3)P; M = Cu, P = dppe (Ph(2)PCH(2)CH(2)PPh(2))] give a range of compounds containing the pentacyanocyclopentadienide ligand, [C(5)(CN)(5)](-) (1). The new complexes [(Ph(3)P)(2)M{1}](2) [M = Cu (3); M = Ag (5)], [(Ph(3)P)(3)Ag{1}] (4), [(dppe)(3)Cu(2){1}(2)] (6) and [Au(PPh(3))(2)][1] (7) include the first complete series of group 11 complexes of any cyclopentadienide ligand to be structurally characterised.  相似文献   

17.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

18.
Recrystallisation of Ag[L(1)] (HL(1) = 3{5}-[pyrid-2-yl]-5{3}-tert-butylpyrazole) in the presence of halide anions leads to two polymorphs of [Ag(3)(μ-Br)(μ-L(1))(2)], which differ in their mode of supramolecular association, and the cluster [Ag(10)(μ-L(1))(8)]Cl(2). In contrast, Ag[L(2)] (HL(2) = 3{5}-[isoquinol-1-yl]-5{3}-tert-butyl-pyrazole) crystallises as a cyclic tetrameric molecule.  相似文献   

19.
The synthesis and characterization of new two-dimensional (2D) cyanide-bridged iron(II)-gold(I) bimetallic coordination polymers formulated, {Fe(3-Xpy)2[Au(CN)2]2} (py = pyridine; X = F (1), Cl (2), Br (3), and I (4)) and the clathrate derivative {Fe(3-Ipy)2[Au(CN)2]2}.1/2(3-Ipy) (5), are reported. The iron(II) ion lies in pseudoctahedral [FeN6] sites defined by four [Au(CN)2](-) bridging ligands and two 3-Xpy ligands occupying the equatorial and axial positions, respectively. Although only compounds 2 and 4 can be considered strictly isostructurals, all of the components of this family are made up of parallel stacks of corrugated {Fe[Au(CN)2]2}n grids. The grids are formed by edge sharing of {Fe4[Au(CN)2]4} pseudosquare moieties. The stacks are constituted of double layers sustained by short aurophilic contacts ranging from 3.016(2) to 3.1580(8) A. The Au...Au distances between consecutive double layers are in the range of 5.9562(9)-8.790(2) A. Compound 5, considered a clathrate derivative of 4, includes one-half of a 3-Ipy molecule per iron(II) atom between the double layers. Compound 1 undergoes a half-spin transition with critical temperatures Tc downward arrow = 140 K and Tc upward arrow = 145 K. The corresponding thermodynamic parameters derived from differential scanning calorimetry (DSC) are Delta H = 9.8 +/- 0.4 kJ mol(-1) and Delta S = 68.2 +/- 3 J K mol(-1). This spin transition is accompanied by a crystallographic phase transition from the monoclinic P2(1)/c space group to the triclinic P1 space group. At high temperatures, where 1 is 100% high-spin, there is only one crystallographically independent iron(II) site. In contrast, the low temperature structural analysis shows the occurrence of two crystallographically independent iron(II) sites with equal population, one high-spin and the other low-spin. Furthermore, 1 undergoes a complete two-step spin transition at pressures as high as 0.26 GPa. Compounds 2- 4 are high-spin iron(II) complexes according to their magnetic and [FeN6] structural characteristics. Compound 5, characterized for having two different iron(II) sites, displays a two-step spin transition with critical temperatures of Tc(1) = 155 K, Tc(2) downward arrow = 97 K, and Tc(2) upward arrow = 110 K. This change of spin state takes place in both sites simultaneously. All of these results are compared and discussed in the context of other {Fe(L) x [M(I)(CN)2]} coordination polymers, particularly those belonging to the homologous compounds {Fe(3-Xpy)2[Ag(CN)2]2} and their corresponding clathrate derivatives.  相似文献   

20.
The catechol dioxygenase reactivity of iron(III) complexes using tripodal ligands was investigated. Increasing, as well as decreasing, chelate ring sizes in the highly active complex [Fe(tmpa)(dbc)]B(C6H5)4 (tmpa = tris[(2-pyridyl)methyl]amine; dbc = 3,5-di-tert-butylcatecholate dianion), using related ligands, only resulted in decreased reactivity of the investigated compounds. A detailed low-temperature stopped-flow investigation of the reaction of dioxygen with [Fe(tmpa)(dbc)]B(C6H5)4 was performed, and activation parameters of DeltaH++ = 23 +/- 1 kJ mol(-1) and DeltaS++ = -199 +/- 4 J mol(-1) K(-1) were obtained. Crystal structures of bromo-(tetrachlorocatecholato-O,O')(bis((2-pyridyl)methyl)-2-pyridylamine-N,N',N')-iron(III), (mu-oxo)-bis(bromo)(bis((2-pyridyl)methyl)-2-pyridylamine-N,N',N' ',N')-diiron(III), dichloro-((2-(2-pyridyl)ethyl)bis((2-pyridyl)methyl)amine-N,N',N' ',N')-iron(III) and (tetrachlorocatecholato-O,O')((2-(2-pyridyl)ethyl)bis((2-pyridyl)methyl)amine-N,N',N' ',N')-iron(III) are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号