首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The alkoxycarbonylation of diamines with dialkyl carbonates presents promising route for the synthesis of dicarbamates, one that is potentially 'greener' owing to the lack of a reliance on phosgene. While a few homogeneous catalysts have been reported, no heterogeneous catalyst could be found in the literature for use in the synthesis of dicarbamates from diamines and dialkyl carbonates. Because heterogeneous catalysts are more manageable than homogeneous catalysts as regards separation and recycling, in our study, we hydrothermally synthesized and used pure berlinite (AlPO4) and zinc-incorporated berlinite (ZnAlPO4) as heterogeneous catalysts in the production of dimethylhexane-1,6-dicarbamate from 1,6-hexanediamine (HDA) and dimethyl carbonate (DMC). The catalysts were characterized by means of XRD, FT-IR and XPS. Various influencing factors, such as the HDA/DMC molar ratio, reaction temperature, reaction time, and ZnAlPO4/HDA ratio, were investigated systematically.  相似文献   

2.
Lactose oxidation was investigated at 70 °C and at pH 8 using oxygen as an oxidant over a comprehensive set of commercially available mono- and multi-metallic as well as promoted Pd catalysts with active carbon, alumina and calcium carbonate as catalyst supports. An optimum cluster size of 6–10 nm resulted in the highest initial turnover frequencies. High conversion levels above 90% were achieved on Pd/C catalyst, as well as over Pd/Al2O3 and (Pd–Pb)/CaCO3, whereas (Pd–V)/C catalyst gave only 30% conversion after 200 min. The latter catalyst was relatively inactive due to its high support acidity and profound deactivation during oxidation. Besides the main oxidation product, lactobionic acid, also, lactulose was generated as a result of lactose isomerisation under alkaline conditions. The electrochemical potentials of the catalysts were measured during lactose oxidation. The main result of these measurements was that, when the electrochemical potential of the catalyst increased very quickly, its oxidation activity was low due to metal over-oxidation. The selectivities to the desired product, lactobionic acid, were relatively high, above 80% for most of the catalysts, except for (Pd–V)/C. Furthermore, the selectivity to the lactobionic acid decreased with increasing metal dispersion, thus, indicating that the optimum metal particle sizes for producing high amounts of lactobionic acid is above 3 nm.  相似文献   

3.

Abstract  

Supported iron catalysts are active for hydrocarbon oxidation with H2O2, but the hydrogen peroxide dismutation is a shortcoming that may constrain their applications. Herein, we attempted to address this problem using potassium and phosphate-doped iron oxide–silica nanocomposite (KPFeSi) synthesized via sol–gel methods. The promoted silica–iron oxide nanocomposite has been characterized by elemental analyses, FTIR, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface-size determination. The synthesized KPFeSi was an active catalyst in the low-temperature liquid phase oxidation of various alkyl aromatics with hydrogen peroxide in conversions of 31–78%. Furthermore, the direct oxidation of benzene into phenol using hydrogen peroxide has been achieved in the absence of any acid with this KPFeSi compound.  相似文献   

4.
Single‐atom catalysts (SACs) have been explored widely as potential substitutes for homogeneous catalysts. Isolated cobalt single‐atom sites were stabilized on an ordered porous nitrogen‐doped carbon matrix (ISAS‐Co/OPNC). ISAS‐Co/OPNC is a highly efficient catalyst for acceptorless dehydrogenation of N‐heterocycles to release H2. ISAS‐Co/OPNC also exhibits excellent catalytic activity for the reverse transfer hydrogenation (or hydrogenation) of N‐heterocycles to store H2, using formic acid or external hydrogen as a hydrogen source. The catalytic performance of ISAS‐Co/OPNC in both reactions surpasses previously reported homogeneous and heterogeneous precious‐metal catalysts. The reaction mechanisms are systematically investigated using first‐principles calculations and it is suggested that the Eley–Rideal mechanism is dominant.  相似文献   

5.
Ternary Pt–Te–Ru catalysts with different atomic ratios were synthesized by reducing the precursor with formic acid. The physical and electrochemical characterization of the Pt3TeRu0.25/C catalyst was performed by transmission electron microscopy (TEM), X-ray diffraction, energy-dispersive X-ray spectroscopy equipped with TEM (TEM-EDX), X-ray photoelectron spectrometer, ethanol oxidation, and CO stripping. In TEM images, the Pt3TeRu0.25/C nanoparticles with an average particle size of around 2.9 nm were well dispersed on the carbon support. The Pt3TeRu0.25/C catalyst was superior to the Pt3Te/C catalyst in respect of catalytic activity, durability, and CO tolerance. The positive effect of the Ru presence in the Pt3TeRu0.25/C catalyst was ascribed to the interactions of Ru or Ru oxides.  相似文献   

6.

Abstract  

Impregnated Cu–Zn over Al2O3 exhibits high activity with the use of a lower amount of active metal relative to conventional co-precipitation catalysts. The activity of the catalyst could be enhanced by addition of urea to the metal salt solution during impregnation. The H2 yield from Cu–Zn catalysts with urea is 42%, while the H2 yield from catalyst without urea is only 28% in a continuous system at 250 °C and 1.2 atm. The H2 yield of the catalyst with urea in this study could compete with that of commercial catalysts. The role of urea in the Cu–Zn catalysts was investigated. X-ray diffraction (XRD) analysis of the catalysts shows that the crystal size of CuO could be reduced by the addition of urea. The XRD diffractogram of the catalyst prior to calcination also shows the formation of NH4NO3, which could aid in dissociation of metal clusters. Scanning electron microscopy (SEM) images of catalysts show the size of Cu–Zn compound clusters and also their dispersion over the Al2O3 surface on the impregnated catalysts. The addition of urea could also yield smaller Cu–Zn compound clusters and better dispersion compared with the impregnated catalyst without urea. Such impregnated Cu–Zn catalysts with urea could be alternative novel catalysts for methanol steam reforming.  相似文献   

7.
Summary.  The first case of an enantioselective hydrogenation of monosubstituted pyridines and furans with homogeneous rhodium diphosphine catalysts with low but significant enantioselectivities and catalyst activities is reported. Best enantioselectivities (ees of 24–27%) were obtained for the hydrogenation of 2- and 3-pyridine carboxylic acid ethyl ester and 2-furan carboxylic acid with catalysts prepared in situ from [Rh(nbd)2]BF4 and the chiral ligands diop, binap, or ferrocenyl diphosphines of the josiphos type. Turnover numbers (ton) were in the order of 10–20, turnover frequencies (tof) usually 1–2 h−1. Diphosphines giving 6- or 7-ring chelates led to higher ees than 1,2-diphosphines; otherwise, no clear correlation between ligand properties and catalytic performance was found. In some experiments black precipitates were observed at the end of the reaction, indicating the decomposition of the homogeneous catalysts for certain ligand/metal/substrate combinations. Received April 5, 2000. Accepted (revised) May 2, 2000  相似文献   

8.
The esterification of valeric acid with n‐butanol was studied with homogeneous and heterogeneous catalysts. The activity and performance of homogeneous p‐toluenesulfonic acid and heterogeneous cation exchange resin catalysts Amberlyst 36, Indion 190, and Amberlite IRC‐50 were evaluated. The pseudo‐homogeneous kinetic model was used to investigate the kinetic parameters of homogeneous‐ and heterogeneous‐catalyzed esterification. The UNIFAC (universal functional activity coefficient) approach was used to study the nonideality of the esterification reaction. The reaction was statistically modeled and optimized by the application of response surface methodology. The effects of independent variables such as reaction temperature, initial molar ratio, and catalyst loading on the conversion of valeric acid were investigated. The optimized conditions for the esterification reaction catalyzed by Amberlyst‐36 were found as temperature 360.4 K, initial molar ratio 3.8, and catalyst loading 6.7 wt%. The predicted conversion (89%) at these optimized conditions is in good agreement with the experimental conversion (87.3 ± 1.6%).  相似文献   

9.
Using a micro-calorimetrical DSC we have compared the acid-catalyzed inversion of sucrose in homogeneous and heterogeneous systems. Acetic acid was chosen as catalyst for homogeneous system, and several carboxylic cationites were used as heterogeneous catalysts. The kinetic apparent parameters (A, E, k ap) for all the systems were calculated from DSC data with Friedmann’s method and catalytic constant, k323cat, was further inferred. We found that the specific catalyst efficiency, q cat, in heterogeneous system is over 5000 times higher than in case of homogeneous ones. The activity of heterogeneous carboxylic systems is still about 30 times larger than those of a strong mineral acid in homogeneous catalysis. The results indicate the high efficiency of heterogeneous systems for soft acid catalysis of the sucrose hydrolysis.  相似文献   

10.
Our recent results on organic transformations such as C–C bond formation via the activation of stable C–C or C–H bonds and aerobic oxidation of alcohols catalyzed by CeO2-supported ruthenium are reviewed. A simple, recyclable heterogeneous Ru/CeO2 catalyst showed excellent activity for sequential transfer-allylation/isomerization of homoallyl alcohols with aldehydes to saturated ketones via the C–C bond activation. While homogeneous ruthenium and rhodium complex catalysts require additives and/or pressurized CO, the reaction with Ru/CeO2 smoothly proceeded in the absence of any additives. The Ru/CeO2 catalyst also showed excellent activity for the addition of sp2 C–H bonds of aromatic ketones to vinylsilanes. The Ru/CeO2 catalyst realized the chelation-assisted arylation of stable aromatic C–H bonds with aryl chlorides. The activity of the catalyst was greatly improved by the PPh3-modification under hydrogen atmosphere prior to the reactions. The catalyst acts heterogeneously without a significant leaching of ruthenium species, indicating that the Ru/CeO2 catalyst has an advantage over homogeneous catalysts from practical and environmental points of view. The effects of chemical and physical properties of CeO2 on the activity of CeO2-supported noble metal catalysts were examined. Porous CeO2 powders were prepared by the coagulation of solvothermally synthesized colloidal ceria nanoparticles, and the thus-prepared CeO2 powders showed an oxygen migration ability far superior to the CeO2 samples prepared by the usual precipitation method. The ruthenium catalysts supported on the former CeO2 powders showed a high activity for the aerobic oxidation of benzyl alcohol. The effects of the pore structure of CeO2 powders on the activity of the Ru/CeO2 catalysts are also discussed.  相似文献   

11.
Summary.  Selective decomposition of ethanol was used as a test reaction at 350°C to evaluate the catalytic activity of two Al–Mg–O mixed oxides prepared by two different methods (wet impregnation and coprecipitation). The catalyst precursors were examined by TG and DTA and were calcined between 500–900°C for 5 h in air. The surface area of all catalysts was measured by N2 sorption using the BET method. The total acidity and basicity were determined by TPD using pyridine and formic acid. The catalysts were characterized by XRD analysis. It was found that the preparation method of Al–Mg–O catalyst has a great effect on the selective decomposition of ethanol. Al–Mg–O (I) catalysts, prepared by wet impregnation, were more selective towards ethene formation during dehydration of ethanol. This is ascribed to their high total surface acidity. On the other hand, Al–Mg–O (II) catalysts, prepared by coprecipitation, were highly selective in the oxidative dehydrogenation of ethanol to yield acetaldehyde. This could be attributed to their high concentration of basic sites. In addition, the production of traces of diethyl ether was also observed (three times more for Al–Mg–O (II) than for Al–Mg–O (I)). Corresponding author. E-mail: shalawy99@yahoo.com Received October 12, 2001. Accepted (revised) January 7, 2002  相似文献   

12.
A nontraditional approach to the development of catalysts for low-temperature ammonia synthesis is considered. The approach is characterized by application of catalysts representing heterogeneous analogs of the known homogeneous nitrogen-fixing systems based on transition metal compounds and strong electron donors. The use of this approach led to the development of catalysts that considerably surpass in their activity (at atmospheric pressure) the industrial catalyst for the ammonia synthesis. Some of the developed catalysts are active in the formation of ammonia from dinitrogen and dihidrogen even at 110–150°C. The mechanisms of activation and hydrogenation of dinitrogen over these new catalysts are discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 796–806, May, 1998.  相似文献   

13.
Fe–N–C catalysts were prepared through metal-assisted polymerization method. Effects of carbon treatment, Fe loading, nitrogen source, and calcination temperature on the catalytic performance of the Fe–N–C for H2O2 electroreduction were measured by voltammetry and chronoamperometry. The Fe–N–C catalyst shows optimal performance when prepared with pretreated active carbon, 0.2 wt.% Fe, paranitroaniline (4-NA) and one-time calcination. The Fe–N–C catalyst displayed good performance and stability for electroreduction of H2O2 in alkaline solution. An Al–H2O2 semi-fuel cell was set up with Fe–N–C catalyst as cathode and Al as anode. The cell exhibits an open-circuit voltage of 1.3 V and its power density reached 51.4 mW cm−2 at 65 mA cm−2.  相似文献   

14.
Catalytic wet air oxidation of an aqueous solution of p-hydroxybenzoic acid was conducted over ruthenium catalysts (1 wt%) supported on CeO2–Al2O3 aerogels mixed oxides at 140 °C and 50 bars of air. We study the effect of the amount of CeO2 in the catalyst. We found that the optimal cerium content in the Al2O3 support was 20 wt%. The activity of the Ru/Al2O3 and Ru/CeO2 was also tested for comparison. It was found that the addition of CeO2 on the alumina support improves the activity of Ru catalysts. The activity of the samples decreases in the following order: Ru/Ce–Al (20) > Ru/Ce–Al (10) > Ru/Ce–Al (5) ≈ Ru/Al2O3 > Ru/CeO2. Samples characterization was performed by means of N2 adsorption–desorption, XRD, UV–Vis, TPR, SEM and TEM.  相似文献   

15.
Kinetics of esterification of acrylic acid with ethanol in the presence of homogeneous (H2SO4, HCl, p‐TSA, HI) catalysts as well as heterogeneous catalysts (Dowex 50WX, Amberlyst 15) was studied. The effects and performance of these catalysts on the conversion of acrylic acid were evaluated. In the kinetics of homogeneous catalyzed reaction, both concentration and activity‐based model were employed. Activity coefficients were predicted by the Universal Functional group Contribution (UNIFAC) method to consider nonideal behavior of the liquid phase. The heterogeneous catalyzed reaction mechanisms were developed using Eley–Rideal theory. The model results were compared with the experimental results and were in good agreement. The temperature dependency of the constants, reaction enthalpy, and entropy, and activation energy were determined. The conversion of acrylic acid was obtained as 63.2%, 61.02%, 53.3%, 21.4%, 34.96%, and 14.84% for H2SO4, p‐TSA, HCl, HI, Dowex 50WX, and Amberlyst 15, respectively, under process temperature of 70°C, reactant molar ratio of 1:1, and catalyst concentration of 2% (v/v) for homogeneous and 2.17 g for heterogeneous catalyst. These outcomes provide an approach to understand the significant effect of each catalyst on the esterification kinetics of acrylic acid and ethanol.  相似文献   

16.
Generally, water gas shift (WGS) reaction is a very important step in the industrial production of hydrogen, ammonia and other bulk chemicals utilizing synthesis gases. In this paper, we are reporting WGS reaction carried out in our research group for the application of hydrogen station and fuel processor. We prepared various Mo2C, Pt–Ni-based and Cu-based catalysts for low temperature WGS reaction. The characteristics of the prepared catalyst were analyzed by N2 physisorption, CO chemisorptions, XRD, SEM and TEM technologies, and compared with that of commercial Cu-Zn/Al2O3 catalyst. It was found that prepared catalysts displayed reasonably good activity and thermal cycling stability than commercial LTS (Cu–Zn/Al2O3) catalyst. It was found that the deactivation of commercial LTS catalyst during the thermal cycling run at 250 °C was caused by the sintering of active metal even though it shows high activity at less than 250 °C. The deactivation of Mo2C catalyst during the thermal cycling run was caused by the transition of Moδ+, MoIV and Mo2C on the surface of Mo2C catalyst to MoVI(MoO3) with the reaction of H2O in reactants. However, they showed higher stability than the commercial LTS catalyst during thermal cycling test. The Pt–Ni/CeO2 catalyst after the thermal cycling shows slightly deactivation due to the sintering of Ni metal. Among Cu-based catalysts, it was found that Cu–Mo/Ce0.5Zr0.5O2 catalyst has higher WGS activity and stability over commercial LTS catalyst. The results suggested that Pt–Ni/CeO2 and Cu–Mo/Ce0.5Zr0.5O2 catalysts are desirable candidates for application in hydrogen station and fuel processor system even though all other catalysts deactivated slowly during the thermal cycling run.  相似文献   

17.
取代硫酸、氢氟酸等液体酸催化剂的途径   总被引:49,自引:0,他引:49  
吴越 《化学进展》1998,10(2):158-171
高效固体酸催化剂无论对现有工业生产, 还是从环保考虑, 都是十分重要的。特别是对那些使用液体酸诸如H2SO4、HF 和A lCl3 等为催化剂的液相酸工艺。近年来考虑到均相和多相酸催化反应中起决定作用的酸位(中心) 之间的类似性, 根据近代均相酸催化理论, 通过对不同酸位(L 酸、B 酸、超强酸) 本质的分析, 对强酸催化剂提出了一个统一的酸结构模型。以此为依据, 可对一些强酸催化剂进行剪裁。  相似文献   

18.
N,N-dimethylhydroxylamine (DMHA) is a novel salt-free reducing reagent used in the separation U from Pu and Np in the reprocessing of power spent fuel. This paper reports on the radiolysis of aqueous DMHA solution and its radiolytic liquid organics. Results show that the main organics in irradiated DMHA solution are N-methyl hydroxylamine, formaldehyde and formic acid. The analysis of DMHA and N-methyl hydroxylamine were performed by gas chromatography, and that of formaldehyde was performed by ultraviolet–visible spectrophotometry. The analysis of formic acid was performed by ion chromatography. For 0.1–0.5 mol L−1 DMHA irradiated to 5–25 kGy, the residual DMHA concentration is (0.07–0.47) mol L−1, the degradation rate of DMHA at 25 kGy is 10.1–30.1%. The concentrations of N-methylhydroxylamine, formaldehyde and formic acid are (8.25–19.36) × 10−3, (4.20–36.36) × 10−3 and (1.35–10.9) × 10−4 mol L−1, respectively. The residual DMHA concentration decreases with the increasing dose. The concentrations of N-methylhydroxylamine and formaldehyde increase with the dose and initial DMHA concentration, and that of formic acid increases with the dose, but the relationship between the concentration of formic acid and initial DMHA concentration is not obvious.  相似文献   

19.
A fully automated method has been developed for analysis of eighteen antibacterial compounds, including penicillins, cephalosporins and sulfonamides, in animal feed with limits of quantification in the range 0.25–5.79 μg kg−1. The method is based on pressurized liquid extraction of 3 g homogenized feed with water and online clean-up of 500 μL of the extract with C18HD cartridges. The purified sample was directly analysed by liquid chromatography–electrospray tandem mass spectrometry (SPE–LC–ESI-MS–MS). Chromatographic separation was achieved within 10 min by use of a C12 Phenomenex Hydro-RP reversed-phase analytical column and a mobile phase gradient (water + 0.1% formic acid–methanol + 0.1% formic acid). The method was validated, revealing capability for detection of concentrations as low as 0.09 μg kg−1, decision limits (CCα) and detection capabilities (CCβ) in the range 10–174 μg kg−1 and 22–182 μg kg−1, respectively, and inter-day precision ranging from 0.7 to 8.3%. Recovery, with internal standard correction, was in the range 93–134% for all analytes. The method was then applied to analysis of fifteen feed samples, nine of which contained at least one antimicrobial at concentrations between 0.006 and 1.526 mg kg−1. The performance data and results from the method were compared with those from a previous method developed by our group, using offline SPE, by analyzing the same set of samples by both methods. The online SPE approach resulted in slightly improved sensitivity, with LODs of 0.09–2.12 μg kg−1 compared with 0.12–3.94 μg kg−1 by the offline approach. In general, better recovery was achieved by use of online purification (for 72% of the analytes) and the correlation between the two methods was good. The main advantages of the new online method are rapid and automated sample pre-treatment, and reduction of sample manipulation, enabling high-throughput analysis and highly accurate results. Because of all these characteristics, the proposed method is applicable and could be deemed necessary within the field of food control and safety.  相似文献   

20.
The effects of acidity and variation in concentration of acid sites of dodecatungstophosphoric acid (DTP), supported DTP and montmorillonite-K catalysts were studied for various organic reactions such as the hydroxyalkylation of phenols to bisphenols, intramolecular rearrangement of benzyl phenyl ether (BPE) to 2-benzyl phenol (2-BP) and selective cleavage of tert-butyldimethylsilyl (TBDMS) ether into the corresponding alcohol. Both dodecatungstophosphoric acid (DTP) impregnated on silica (SiO2) and montmorillonite catalysts showed the highest catalyst activity with 90–95% selectivity to bisphenol for the hydroxyalkylation of phenols to give bisphenol. Temperature Programmed Desorption (TPD) of ammonia and activity results of various catalysts showed that an appropriate combination of both strong and weak acidic sites in the catalyst was highly desirable for high bisphenol selectivity. A 10% DTP/SiO2 catalyst was found to be highly selective for the cleavage of TBDMS ether into the corresponding alcohol at room temperature giving a high TON of 9.5 × 105 even after the 4th recycle. DTP was also found to be a promising solid acid catalyst for the intramolecular rearrangement of BPE giving 2-BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号