首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The flow from the tip of a needle electrode is caused by the Coulomb force acting on the space charge [1–3]. This charge is formed because of the dependence of the conductivity on the temperature, nonuniformity of which is due to Joule heating [1] and the electric field intensity [2] or processes near the electrode [3–5]. The present paper considers the stability of a dielectric liquid between spherical electrodes in order to elucidate the possibility of a thermoelectrohydrodynainic flow due to Joule heating. In the presence of external heating, the possibility of such a flow has been demonstrated both experimentally and theoretically [6–8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 133–137, March–April, 1980.  相似文献   

2.
Experiments show that a weakly conducting fluid in a plane-parallel system of electrodes is set into motion if the field intensity is sufficiently great [1–5]. The loss of stability is due to the formation of charges near the electrodes and the influence of the Coulomb forces on these charges. The formation of the space charges is usually attributed to oxidation-reduction electrode reactions and bulk recombination of the ions formed at the electrodes [1–4]. In the present paper, the stability of a weakly conducting fluid in a plane-parallel system of electrodes with symmetric distribution of the space charge is studied. The methods of the theory of solution bifurcation are used to construct the stationary flow which arises after the loss of stability and to investigate the stability of this flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 20–26, July–August, 1981.  相似文献   

3.
In an inhomogeneously heated weakly conductive liquid (electrical conductivity 10–12–1 cm–1) located in a constant electric field a volume charge is induced because of thermal inhomogeneity of electrical conductivity and dielectric permittivity. The ponderomotive forces which develop set the liquid into intense motion [1–6]. However, under certain conditions equilibrium proves possible, and in that case the question of its stability may be considered. A theoretical analysis of liquid equilibrium stability in a planar horizontal condenser was performed in [2, 4]. Critical problem parameters were found for the case where Archimedean forces are absent [2]. Charge perturbation relaxation was considered instantaneous. It was shown that instability is of an oscillatory character. In [4] only heating from above was considered. Basic results were obtained in the limiting case of disappearingly small thermal diffusivity in the liquid (infinitely high Prandtl numbers). In the present study a more general formulation will be used to examine convective stability of equilibrium of a vertical liquid layer heated from above or below and located in an electric field. For the case of a layer with free thermally insulated boundaries, an exact solution is obtained. Values of critical Rayleigh number and neutral oscillation frequency for heating from above and below are found Neutral curves are constructed. It is demonstrated that with heating from below instability of both the oscillatory and monotonic types is possible, while with heating from above the instability has an oscillatory character. Values are found for the dimensionless field parameter at which the form of instability changes for heating from below and at which instability becomes possible for heating from above.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 16–23, September–October, 1976.In conclusion, the author thanks E. M. Zhukhovitskii for this interest in the study and valuable advice.  相似文献   

4.
A characteristic of small blood and lymphatic vessels is the capacity of the wall to change its rheological properties and lumen by active contraction of the annular muscle cells contained in it [1–3]. A model of flow in the vessels taking this feature into account has been proposed in [4, 5], where a linear stability analysis is also given. A consequence of wall activity is the existence of auto-oscillatory flow conditions [6–8], which have also been discovered in the numerical solutions of the corresponding problems [9, 10]. Up to the present time flows have only been studied under steady conditions at the ends of the vessel and in the environment. The wall of an actual blood vessel is subject to various actions, frequently of a periodic nature: pressure pulsations at entry and rhythmically changing external forces applied from the surrounding tissues. Data exist on the sensitivity of vessels to transient actions [11–13], in particular on the relationship of their hydraulic resistance to frequency and amplitude of the action. There has been frequent discussion of the hypothesis that bv contraction of muscles in its walls or by external compression the vessel can act as a valveless pump [14, 15]. Within the framework of the quasione-dimensional approximation given below [4] the movement of liquid along a viscoelastic tube in the presence of small amplitude periodic external actions has been studied. A general solution of the problem has been constructed and concrete examples are given illustrating the features of forced wave motions in a tube having passive and active properties.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 4, pp. 94–99, July–August, 1984.  相似文献   

5.
Hydrodynamic phenomena in weakly conducting single-phase media due to interphase electric stresses are reviewed in [1]. In the present paper, a model is constructed of a dielectric suspension with body couples due to the field acting on free charges distributed on the surface of the particles of the suspension. Averaging of the microscopic fields yields macroscopic equations for the field and the polarization of the dielectric suspension with allowance for the finite relaxation time of the distribution of the free charge on the phase interface. The developed model is used to consider the occurrence of spontaneous rotation of a dielectric cylinder in a weakly conducting suspension in the presence of an electric field; compared with the case of single-phase media [2], this is characterized by a significant reduction in the threshold intensity of the electric field with increasing concentration of the particles [3]. In the present model of a dielectric suspension, the destabilization of the cylinder is due to the occurrence of rotations of the particles of the suspension due to the interaction between the polarization and the motion of the medium. The relaxation equation for the polarization for the given model is analogous to the corresponding equation for media which can be magnetized [4–6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 86–93, March–April, 1980.  相似文献   

6.
Charging of disperse particles with good conduction in two-phase media with unipolar charge is considered in the case when the volume concentration of the particles is low. For this, in the framework of electrohydro-dynamics [1, 2], a study is made of the charge of one perfectly conducting liquid particle in a gas (or liquid) with unipolar charge in a fairly strong electric field. The influence of the inertial and electric forces on the motion of the gas is ignored, and the velocities are found by solving the Hadamard—Rybczynski problem. We consider the axisymmetric case when the gas velocity and electric field intensity far from the particle are parallel to a straight line. The analogous problem for a solid spherical particle was solved in [3–6] (in [3], the relative motion of the gas was ignored, while in [4–6] Stokes flow around the particle was considered). The two-dimensional problem of the charge of a solid circular, perfectly conducting cylinder in an irrotational flow of gas with unipolar charge was studied in [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 108–115, November–December, 1980.We thank L. I. Sedov and V. V. Gogosov for a helpful discussion of the present work.  相似文献   

7.
The effects of the magnetic Reynolds number have been examined via the distribution of the magnetic fields induced by the motion of a medium in a rectangular channel with conducting walls in the presence of an inhomogeneous magnetic field; the effects of wall conductivity and geometry of the external field are also examined as regards the distribution of the induced currents, the Joule loss, and the electric and magnetic fields over the cross section. The problem has previously been considered for a channel with insulating walls [1].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 19–27, May–June, 1971.We are indebted to A. B. Vatazhin for his interest.  相似文献   

8.
Several theoretical [1–3] and experimental [4] studies have been made of the diamagnetic perturbations during expansion of a conducting material in a magnetic field. These studies have related either to superconducting media [1], or to a strong magnetic field which has a considerable effect on the motion of the medium [2], or to a weakly ionized media, in which the effects of field variation in the medium can be neglected [3]. In the following we examine the expansion of a substance with finite conductivity in a weak (having no effect on the motion of the medium) magnetic field with account for the effects of field attenuation within the expanding matter. This occurs in the diagnostics of the state of the matter of a spark at a laser focus on the basis of diamagnetic induction signals [4]. The relations obtained in the following appear to be applicable for estimating the diamagnetic properties of meteor trails.The method of solution of this problem may be of some interest; therefore, in the following the solution is obtained by several techniques for different basic geometries.  相似文献   

9.
The article discusses the three-dimensional problem of unsteady-state waves arising on a free surface and at the interface between two liquids of different densities, with motion of the source. Analogous problems for steady-state waves in a two-layer liquid have been investigated in [1–6], and for unsteady-state waves in a homogeneous liquid in [7, 8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–146, July–August, 1970.  相似文献   

10.
The flow of a plasma with different component temperatures in the boundary layers at the electrodes of an MHD channel is investigated without any assumptions as to self-similarity. For the calculation of the electron temperature, the full energy equation for an electron gas [1] is solved with allowance for the estimates given in [2]. In contrast to [3, 4], the calculation includes the change in temperature of electrons and ions along the channel caused by the collective transport of energy, the work done by the partial pressure forces, and the Joule heating and the energy exchange between the components. The problem of the boundary layers in the flow of a two-temperature, partially ionized plasma past an electrode is solved in simplified form by the local similarity method in [5–7]. In these papers, either the Kerrebrock equation is used [5, 6] or the collective terms are omitted from the electron energy equation [7].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 3–10, September–October, 1972.The author thanks V. V. Gogosov and A. E. Yakubenko for interest in this work.  相似文献   

11.
Equations are obtained which describe the propagation of long waves of small, but finite amplitude in an ideal weakly conducting liquid and on the basis of these equations the influence of MHD interaction effects on the characteristics of the solitary waves is investigated. The wave equations are derived under less rigorous constraints on the external magnetic field and the MHD interaction parameter than in [1–3]. It is shown that the evolution of the free surface is described by the KdV-Burgers or KdV equations with a dissipative perturbation, and that the propagation velocity of the solitary waves depends on the strength of the external magnetic field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 177–180, November–December, 1989.  相似文献   

12.
The problem of the optimization of the shape of a body in a stream of viscous liquid or gas was treated in [1–5]. The necessary conditions for a body to offer minimum resistance to the flow of a viscous gas past it were derived in [1], The necessary optimality conditions when the motion of the fluid is described by the approximate Stokes equations were derived in [2], The shape of a body of minimum resistance was found numerically in [3] in the Stokes approximation. The optimality conditions when the motion of the fluid is described by the Navier—Stokes equations were derived in [4, 5], and in [4] these conditions were extended to the case of a fluid whose motion is described in the boundary-layer approximation. The necessary optimality conditions when the motion of the fluid is described by the approximate Oseen equations were derived in [5] and an asymptotic analysis of the behavior of the optimum shape near the critical points was performed for arbitrary Reynolds numbers.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp, 87–93, January–February, 1978.  相似文献   

13.
The results of [1] are extended to the case when the Joule dissipation leads to a nonlinear profile of the unperturbed temperature of the liquid. Convective instability of a conducting liquid, with flow in a magnetic field directed perpendicular to the flow, with a temperature-dependent distribution of the conductivity which is nonhomogeneous in the direction of action of the electromagnetic force, was discussed in [1], neglecting Joule dissipation. This type of approach permitted investigating an energy equation without electromagnetic terms, which to a certain degree facilitated the solution of the problem. In many cases, however, the Joule dissipation is considerable and may exert a considerable effect on the development of convective instability. Thus, without taking account of Joule evolution of heat, instability can arise only with positive values of the Rayleigh number, exceeding some critical value, while, at the same time, Joule dissipation may lead to a situation in which instability will develop also with negative values of the Rayleigh number, i.e., under conditions when the state without the evolution of Joule heat is absolutely stable.Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 19–22, January–February, 1972.  相似文献   

14.
A study is made of the features of supersonic magnetohydrodynamic (MHD) flows due to the vanishing of the electrical conductivity of the gas as a result of its cooling. The study is based on the example of the exhausting from an expanding nozzle of gas into which a magnetic field (Rem 1) perpendicular to the plane of the flow is initially frozen. It is demonstrated analytically on the basis of a qualitative model [1] and by numerical experiment that besides the steady flow there is also a periodic regime in which a layer of heated gas of electric arc type periodically separates from the conducting region in the upper part of the nozzle. A gas-dynamic flow zone with homogeneous magnetic field different from that at the exit from the nozzle forms between this layer and the conducting gas in the initial section. After the layer has left the nozzle, the process is repeated. It is established that the occurrence of such layers is due to the development of overheating instability in the regions with low electrical conductivity, in which the temperature is approximately constant due to the competition of the processes of Joule heating and cooling as a result of expansion. The periodic regimes occur for magnetic fields at the exit from the nozzle both greater and smaller than the initial field when the above-mentioned Isothermal zones exist in the steady flow. The formation of periodic regimes in steady MHD flows in a Laval nozzle when the conductivity of the gas grows from a small quantity at the entrance due to Joule heating has been observed in numerical experiments [2, 3]. It appears that the oscillations which occur here are due to the boundary condition. The occurrence of narrow highly-conductive layers of plasma due to an initial perturbation of the temperature in the nonconducting gas has previously been observed in numerical studies of one-dimensional flows in a pulsed accelerator [4–6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 138–149, July–August, 1985.  相似文献   

15.
The problem of the stability of the interface between two infinite layers of different immiscible liquids is considered. It is assumed that within the liquid a distributed volume heat source, simulating Joule heating, is given. The stability of the rest state with respect to small unsteady disturbances is investigated. The investigation is carried out using the real boundary conditions at the interface between the two liquids rather than the model boundary conditions usually employed in such problems [5]. The problem considered is related to the practical question of the stability of electrolyzer processes. In the present case a possible threshold mechanism of development of oscillations of the electrolyte-aluminum interface is examined. A numerical example with liquid parameters that coincide with those of the electrolyte and aluminum shows that the thermocapillary instability mechanism can, in fact, be the source of surface waves at the electrolyte-aluminum interface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 156–160, September–October, 1990.  相似文献   

16.
A solution obtained by Fourier's method provides the basis for analyzing the influence of a narrow gas layer, of higher conductivity than the rest of the flow, on the Joule dissipation and current distribution in the terminal zone of a plane magnetohydrodynamic channel with nonconducting walls. The MHD interaction parameter, Reynolds magnetic number, and Hall parameter are assumed small. It is shown that a narrow, highly conductive layer can on occasions be replaced by a surface of discontinuity, on which well-defined relations between the electric quantities are satisfied. The presence of such a layer leads to an increase in the Joule dissipation and a reduction in the lengths of the current lines. A hopeful arrangement for a magnetohydrodynamic energy converter is one in which an inhomogeneous flow is used, consisting of a continuous series of alternating very hot and less hot zones [1,2]. For this arrangement, it is worth examining the influence of the stratified conductivity distribution of the working body on the Joule dissipation and the electric currents in the channel. Numerous papers have discussed the case of inhomogeneous conductivity in the context of MHD system electrical characteristics. A general solution was obtained in [3] for the stationary problem on the electric field in a plane MHD channel with nonconducting walls when the magnetic field and conductivity are arbitrary functions of the longitudinal coordinate. In [4], where the braking of undeformed conducting clusters was investigated, the Joule dissipation, linked with the appearance of closed eddy currents in the cluster as it enters and leaves the magnetic field, was evaluated. The relationships between the electrical quantities, on moving through a narrow layer of low-conductivity liquid, were considered in [5].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 1, pp. 39–43, January–February, 1970.In conclusion, the author thanks A. B. Vatazhin for valuable advice and discussion.  相似文献   

17.
The characteristics of the motion of a particle in an electrically conducting liquid with constant crossed electric and magnetic fields present have been investigated in connection with the problem of MHD-separation in many papers (for example, see the bibliography in [1]). The separation of electrically conducting particles contained in a dielectric liquid, which can be accomplished with the help of a variable magnetic field [2], is also of practical interest. The ponderomotive force acting on a spherical conducting particle near a straight conductor through which the discharge current of a capacitor bank is flowing is found in this paper, and the motion of a particle in a viscous liquid under the action of this force is investigated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 31–34, November–December, 1984.  相似文献   

18.
Magnetic liquids are finding wider and wider use in various fields of technology [1]. Such liquids can be used as heat exchange fluids in equipment which generates a magnetic field under conditions of weightlessness [2] and in a number of other applications. The efficiency of heat exchange equipment is determined to a significant degree by the temperature of the magnetic liquid. In connection with this fact, it is of interest to examine nonisothermal flows at a temperature near the Curie point, where the dependence of volume magnetization M on temperature is expressed most clearly. In this case the character of the liquid flow will be affected not only by the dependence of saturation volume magnetization on temperature, but also by temperature inhomogeneity caused by development of external heat sources and sinks produced by the magnetocaloric effect. We note that although this is a weak effect [3], the temperature redistribution over channel section which it produces may be significant. With a high gradient in the external magnetic field H even a small change in temperature can significantly change the force acting on a magnetic liquid element. The unique features of magnetic liquid flow at a temperature close to the Curie point can be investigated by simultaneously solving the equations of motion and thermal conductivity.Translated from Zhurnal Prikladnoi Mekhaniki i Technicheskoi Fiziki, No. 1, pp. 93–96, January–February, 1984.The author expresses his gratitude to the participants in K. B. Pavlov's scientific seminar for their evaluation of the study.  相似文献   

19.
In many technological processes, thin extended layers of nonuniformly heated fluid are used [1–3]. If they are sufficiently thin, thermocapillary forces have a decisive influence on the occurrence and development of motion of the fluid [4–6]. Investigation of convective motion in such a layer is of great interest for estimating the intensity of heat and mass transfer in technological processes. This paper is a study of unsteady thermocapillary motion in a layer of viscous incompressible fluid with free surface in which a thermal inhomogeneity is created at the initial time. Approximate expressions are obtained for the fields of the velocity, temperature, and pressure in the fluid, and also for the shape of the free surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 17–25, May–June, 1991.  相似文献   

20.
Steady convective motions in a plane vertical fluid layer are investigated. The temperature along the boundaries of the layer varies harmonically and has different average values on each of the boundaries. Thus space-period modulation of the temperature of the walls is assigned along with average lateral heating of the layer. The form of the plane steady motions and regions of existence of through currents and currents of cellular structure are found for various values of the parameters of the problem by the finite difference grid-point method. The dependence of the main characteristics of fluid motion on the Grashof number is determined. The results presented in the article pertain to the case when the period of modulation of the temperature of the boundaries coincides with the wavelength of the critical mode of a plane-parallel current. A numerical investigation of supercritical motions in a vertical layer with plane isothermal boundaries heated to a different temperature was carried out in [1–3]. The effect of a space-periodic inhomogeneity due to curvature of walls on the form and stability of convective motions in a vertical layer with lateral heating was examined in [4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 20–25, September–October, 1978.The author thanks E. M. Zhukhovitskii for formulating the problem and supervising the work and G. Z. Gershuni for discussions and useful comments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号