首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用矩阵符号函数解(广义)周期Sylvester方程   总被引:1,自引:0,他引:1  
陈小山 《计算数学》2012,34(2):153-162
(广义)周期Sylvester方程来源于周期离散线性系统. 本文主要研究这类方程满足特征值分别位于开左半复平面和开右半复平面或位于单位圆周内和单位圆周外条件时用矩阵符号函数求解的数值方法.并通过数值例子说明我们的结论.  相似文献   

2.
It is well known that the least‐squares QR‐factorization (LSQR) algorithm is a powerful method for solving linear systems Ax = b and unconstrained least‐squares problem minx | | Ax ? b | | . In the paper, the LSQR approach is developed to obtain iterative algorithms for solving the generalized Sylvester‐transpose matrix equation the minimum Frobenius norm residual problem and the periodic Sylvester matrix equation Numerical results are given to illustrate the effect of the proposed algorithms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
We give a complete solution of the matrix equation AX?+?BX ??=?0, where A, B?∈?? m×n are two given matrices, X?∈?? n×n is an unknown matrix, and ? denotes the transpose or the conjugate transpose. We provide a closed formula for the dimension of the solution space of the equation in terms of the Kronecker canonical form of the matrix pencil A?+?λB, and we also provide an expression for the solution X in terms of this canonical form, together with two invertible matrices leading A?+?λB to the canonical form by strict equivalence.  相似文献   

6.
An iterative method is proposed to solve generalized coupled Sylvester matrix equations, based on a matrix form of the least-squares QR-factorization (LSQR) algorithm. By this iterative method on the selection of special initial matrices, we can obtain the minimum Frobenius norm solutions or the minimum Frobenius norm least-squares solutions over some constrained matrices, such as symmetric, generalized bisymmetric and (RS)-symmetric matrices. Meanwhile, the optimal approximate solutions to the given matrices can be derived by solving the corresponding new generalized coupled Sylvester matrix equations. Finally, numerical examples are given to illustrate the effectiveness of the present method.  相似文献   

7.
An n×n real matrix P is said to be a symmetric orthogonal matrix if P = P?1 = PT. An n × n real matrix Y is called a generalized centro‐symmetric with respect to P, if Y = PYP. It is obvious that every matrix is also a generalized centro‐symmetric matrix with respect to I. In this work by extending the conjugate gradient approach, two iterative methods are proposed for solving the linear matrix equation and the minimum Frobenius norm residual problem over the generalized centro‐symmetric Y, respectively. By the first (second) algorithm for any initial generalized centro‐symmetric matrix, a generalized centro‐symmetric solution (least squares generalized centro‐symmetric solution) can be obtained within a finite number of iterations in the absence of round‐off errors, and the least Frobenius norm generalized centro‐symmetric solution (the minimal Frobenius norm least squares generalized centro‐symmetric solution) can be derived by choosing a special kind of initial generalized centro‐symmetric matrices. We also obtain the optimal approximation generalized centro‐symmetric solution to a given generalized centro‐symmetric matrix Y0 in the solution set of the matrix equation (minimum Frobenius norm residual problem). Finally, some numerical examples are presented to support the theoretical results of this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
9.
In this paper, we consider the explicit solutions of two matrix equations, namely, the Yakubovich matrix equation VAVF=BW and Sylvester matrix equations AVEVF=BW,AV+BW=EVF and AVVF=BW. For this purpose, we make use of Kronecker map and Sylvester sum as well as the concept of coefficients of characteristic polynomial of the matrix A. Some lemmas and theorems are stated and proved where explicit and parametric solutions are obtained. The proposed methods are illustrated by numerical examples. The results obtained show that the methods are very neat and efficient.  相似文献   

10.
11.
杨家稳  孙合明 《数学杂志》2014,34(5):968-976
本文研究了Sylvester复矩阵方程A_1Z+ZB_1=c_1的广义自反最佳逼近解.利用复合最速下降法,提出了一种的迭代算法.不论矩阵方程A_1Z+ZB_1=C_1是否相容,对于任给初始广义自反矩阵Z_0,该算法都可以计算出其广义自反的最佳逼近解.最后,通过两个数值例子,验证了该算法的可行性.  相似文献   

12.
We consider the Sylvester equation AX?XB+C=0 where the matrix C∈?n×m is of low rank and the spectra of A∈?n×n and B∈?m×m are separated by a line. We prove that the singular values of the solution X decay exponentially, that means for any ε∈(0,1) there exists a matrix X? of rank k=O(log(1/ε)) such that ∥X?X?2?εX2. As a generalization we prove that if A,B,C are hierarchical matrices then the solution X can be approximated by the hierarchical matrix format described in Hackbusch (Computing 2000; 62 : 89–108). The blockwise rank of the approximation is again proportional to log(1/ε). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
14.
In the present paper, we propose Krylov‐based methods for solving large‐scale differential Sylvester matrix equations having a low‐rank constant term. We present two new approaches for solving such differential matrix equations. The first approach is based on the integral expression of the exact solution and a Krylov method for the computation of the exponential of a matrix times a block of vectors. In the second approach, we first project the initial problem onto a block (or extended block) Krylov subspace and get a low‐dimensional differential Sylvester matrix equation. The latter problem is then solved by some integration numerical methods such as the backward differentiation formula or Rosenbrock method, and the obtained solution is used to build the low‐rank approximate solution of the original problem. We give some new theoretical results such as a simple expression of the residual norm and upper bounds for the norm of the error. Some numerical experiments are given in order to compare the two approaches.  相似文献   

15.
In this paper, we consider an explicit solution of system of Sylvester matrix equations of the form A1V1 ? E1V1F1 = B1W1 and A2V2 ? E2V2F2 = B2W2 with F1 and F2 being arbitrary matrices, where V1,W1,V2 and W2 are the matrices to be determined. First, the definitions, of the matrix polynomial of block matrix, Sylvester sum, and Kronecker product of block matrices are defined. Some definitions, lemmas, and theorems that are needed to propose our method are stated and proved. Numerical test problems are solved to illustrate the suggested technique.  相似文献   

16.
This paper introduces an alternating direction method of multipliers (ADMM) for finding solutions to a class of Sylvester matrix equation AXB = E subject to a linear matrix inequality constraint CXDG. Preliminary convergence properties of ADMM are presented. Numerical experiments are performed to illustrate the feasibility and effectiveness of ADMM. In addition, some numerical comparisons with a recent algorithm are also given.  相似文献   

17.
18.
We study the long time behavior of viscosity solutions of the Cauchy problem for Hamilton–Jacobi equations in ? n . We prove that if the Hamiltonian H(x, p) is coercive and strictly convex in a mild sense in p and upper semi-periodic in x, then any solution of the Cauchy problem “converges” to an asymptotic solution for any lower semi-almost periodic initial function.  相似文献   

19.
In this paper, we present new approaches computing the rank and the null space of the (m n + p)×(n + p) generalized Sylvester matrix of (m + 1) polynomials of maximal degrees n,p. We introduce an algorithm which handles directly a modification of the generalized Sylvester matrix, computing efficiently its rank and null space and replacing n by log 2 n in the required complexity of the classical methods. We propose also a modification of the Gauss-Jordan factorization method applied to the appropriately modified Sylvester matrix of two polynomials for computing simultaneously its rank and null space. The methods can work numerically and symbolically as well and are compared in respect of their error analysis, complexity and efficiency. Applications where the computation of the null space of the generalized Sylvester matrix is required, are also given.  相似文献   

20.
In this paper we prove unique solvability of the generalized Stokes resolvent equations in an infinite layer Ω0 = ℝn –1 × (–1, 1), n ≥ 2, in Lq ‐Sobolev spaces, 1 < q < ∞, with slip boundary condition of on the “upper boundary” ∂Ω+0 = ℝn –1 × {1} and non‐slip boundary condition on the “lower boundary” ∂Ω0 = ℝn –1 × {–1}. The solution operator to the Stokes system will be expressed with the aid of the solution operators of the Laplace resolvent equation and a Mikhlin multiplier operator acting on the boundary. The present result is the first step to establish an Lq ‐theory for the free boundary value problem studied by Beale [9] and Sylvester [22] in L 2‐spaces. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号