首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a Krylov subspace technique, based on incomplete orthogonalization of the Krylov vectors, which can be considered as a truncated version of GMRES. Unlike GMRES(m), the restarted version of GMRES, the new method does not require restarting. Like GMRES, it does not break down. Numerical experiments show that DQGMRES(k) often performs as well as the restarted GMRES using a subspace of dimension m=2k. In addition, the algorithm is flexible to variable preconditioning, i.e., it can accommodate variations in the preconditioner at every step. In particular, this feature allows the use of any iterative solver as a right-preconditioner for DQGMRES(k). This inner-outer iterative combination often results in a robust approach for solving indefinite non-Hermitian linear systems.  相似文献   

2.
Despite its usefulness in solving eigenvalue problems and linear systems of equations, the nonsymmetric Lanczos method is known to suffer from a potential breakdown problem. Previous and recent approaches for handling the Lanczos exact and near-breakdowns include, for example, the look-ahead schemes by Parlett-Taylor-Liu [23], Freund-Gutknecht-Nachtigal [9], and Brezinski-Redivo Zaglia-Sadok [4]; the combined look-ahead and restart scheme by Joubert [18]; and the low-rank modified Lanczos scheme by Huckle [17]. In this paper, we present yet another scheme based on a modified Krylov subspace approach for the solution of nonsymmetric linear systems. When a breakdown occurs, our approach seeks a modified dual Krylov subspace, which is the sum of the original subspace and a new Krylov subspaceK m (w j ,A T ) wherew j is a newstart vector (this approach has been studied by Ye [26] for eigenvalue computations). Based on this strategy, we have developed a practical algorithm for linear systems called the MLAN/QM algorithm, which also incorporates the residual quasi-minimization as proposed in [12]. We present a few convergence bounds for the method as well as numerical results to show its effectiveness.Research supported by Natural Sciences and Engineering Research Council of Canada.  相似文献   

3.
Let G be a connected graph. The subdivision graph of G, denoted by S(G), is the graph obtained from G by inserting a new vertex into every edge of G. The triangulation graph of G, denoted by R(G), is the graph obtained from G by adding, for each edge uv, a new vertex whose neighbours are u and v. In this paper, we first provide complete information for the eigenvalues and eigenvectors of the probability transition matrix of a random walk on S(G) (res. R(G)) in terms of those of G. Then we give an explicit formula for the expected hitting time between any two vertices of S(G) (res. R(G)) in terms of those of G. Finally, as applications, we show that, the relations between the resistance distances, the number of spanning trees and the multiplicative degree-Kirchhoff index of S(G) (res. R(G)) and G can all be deduced from our results directly.  相似文献   

4.
Let G be a connected graph of order n. The diameter of a graph is the maximum distance between any two vertices of G. In this paper, we will give some bounds on the diameter of G in terms of eigenvalues of adjacency matrix and Laplacian matrix, respectively.  相似文献   

5.
图和线图的谱性质   总被引:5,自引:0,他引:5  
Let G be a simple connected graph with n vertices and m edges,Lo be the line graph of G and λ1(LG)≥λ2 (LG)≥...≥λm(LG) be the eigenvalues of the graph LG,.. In this paper, the range of eigenvalues of a line graph is considered. Some sharp upper bounds and sharp lower bounds of the eigenvalues of Lc. are obtained. In oarticular,it is oroved that-2cos(π/n)≤λn-1(LG)≤n-4 and λn(LG)=-2 if and only if G is bipartite.  相似文献   

6.
The Laplacian of a directed graph G is the matrix L(G) = O(G) –, A(G) where A(G) is the adjaceney matrix of G and O(G) the diagonal matrix of vertex outdegrees. The eigenvalues of G are the eigenvalues of A(G). Given a directed graph G we construct a derived directed graph D(G) whose vertices are the oriented spanning trees of G. Using a counting argument, we describe the eigenvalues of D(G) and their multiplicities in terms of the eigenvalues of the induced subgraphs and the Laplacian matrix of G. Finally we compute the eigenvalues of D(G) for some specific directed graphs G. A recent conjecture of Propp for D(H n ) follows, where H n stands for the complete directed graph on n vertices without loops.  相似文献   

7.
This paper represents the second part of a study concerning the so-called G-multiobjective programming. A new approach to duality in differentiable vector optimization problems is presented. The techniques used are based on the results established in the paper: On G-invex multiobjective programming. Part I. Optimality by T.Antczak. In this work, we use a generalization of convexity, namely G-invexity, to prove new duality results for nonlinear differentiable multiobjective programming problems. For such vector optimization problems, a number of new vector duality problems is introduced. The so-called G-Mond–Weir, G-Wolfe and G-mixed dual vector problems to the primal one are defined. Furthermore, various so-called G-duality theorems are proved between the considered differentiable multiobjective programming problem and its nonconvex vector G-dual problems. Some previous duality results for differentiable multiobjective programming problems turn out to be special cases of the results described in the paper.  相似文献   

8.
The rational Arnoldi process is a popular method for the computation of a few eigenvalues of a large non‐Hermitian matrix and for the approximation of matrix functions. The method is particularly attractive when the rational functions that determine the process have only few distinct poles , because then few factorizations of matrices of the form A ? zjI have to be computed. We discuss recursion relations for orthogonal bases of rational Krylov subspaces determined by rational functions with few distinct poles. These recursion formulas yield a new implementation of the rational Arnoldi process. Applications of the rational Arnoldi process to the approximation of matrix functions as well as to the computation of eigenvalues and pseudospectra of A are described. The new implementation is compared to several available implementations.  相似文献   

9.
In this paper we consider a numerical enclosure method for multiple eigenvalues of an Hermitian matrix whose graph is a tree. If an Hermitian matrix A whose graph is a tree has multiple eigenvalues, it has the property that matrices which are associated with some branches in the undirected graph of A have the same eigenvalues. By using this property and interlacing inequalities for Hermitian matrices, we show an enclosure method for multiple eigenvalues of an Hermitian matrix whose graph is a tree. Since we do not generally know whether a given matrix has exactly a multiple eigenvalue from approximate computations, we use the property of interlacing inequalities to enclose some eigenvalues including multiplicities.In this process, we only use the enclosure of simple eigenvalues to enclose a multiple eigenvalue by using a computer and interval arithmetic.  相似文献   

10.
We study Riesz transforms associated with a sublaplacian H on a solvable Lie group G, where G has polynomial volume growth. It is known that the standard second order Riesz transforms corresponding to H are generally unbounded in Lp(G). In this paper, we establish boundedness in Lp for modified second order Riesz transforms, which are defined using derivatives on a nilpotent group GN associated with G. Our method utilizes a new algebraic approach which associates a distinguished choice of Cartan subalgebra with the sublaplacian H. We also obtain estimates for higher derivatives of the heat kernel of H, and give a new proof (without the use of homogenization theory) of the boundedness of first order Riesz transforms. Our results can be generalized to an arbitrary (possibly non-solvable) Lie group of polynomial growth.  相似文献   

11.
An approach, based on the Smith Normal Form, is introduced to study the spectra of symmetric matrices with a given graph. The approach serves well to explain how the path cover number (resp. diameter of a tree T) is related to the maximal multiplicity MaxMult(T) occurring for an eigenvalue of a symmetric matrix whose graph is T (resp. the minimal number q(T) of distinct eigenvalues over the symmetric matrices whose graphs are T). The approach is also applied to a more general class of connected graphs G, not necessarily trees, in order to establish a lower bound on q(G).  相似文献   

12.
The FEAST eigenvalue algorithm is a subspace iteration algorithm that uses contour integration to obtain the eigenvectors of a matrix for the eigenvalues that are located in any user‐defined region in the complex plane. By computing small numbers of eigenvalues in specific regions of the complex plane, FEAST is able to naturally parallelize the solution of eigenvalue problems by solving for multiple eigenpairs simultaneously. The traditional FEAST algorithm is implemented by directly solving collections of shifted linear systems of equations; in this paper, we describe a variation of the FEAST algorithm that uses iterative Krylov subspace algorithms for solving the shifted linear systems inexactly. We show that this iterative FEAST algorithm (which we call IFEAST) is mathematically equivalent to a block Krylov subspace method for solving eigenvalue problems. By using Krylov subspaces indirectly through solving shifted linear systems, rather than directly using them in projecting the eigenvalue problem, it becomes possible to use IFEAST to solve eigenvalue problems using very large dimension Krylov subspaces without ever having to store a basis for those subspaces. IFEAST thus combines the flexibility and power of Krylov methods, requiring only matrix–vector multiplication for solving eigenvalue problems, with the natural parallelism of the traditional FEAST algorithm. We discuss the relationship between IFEAST and more traditional Krylov methods and provide numerical examples illustrating its behavior.  相似文献   

13.
Let M(n, C) be the vector space of n × n complex matrices and let G(r,s,t) be the set of all matrices in M(n, C) having r eigenvalues with positive real parts eigenvalues with negative real part and t eigenvalues with zero real part. In particularG(0,n,0) is the set of stable matrices. We investigate the set of linear operators on M(n, C) that map G(r,s,t) into itself. Such maps include, but are not always limited to similarities, transposition, and multiplication by a positive constant. The proof of our results depends on a characterization of nilpotent matrices in terms of matrices in a particular G(r,s,t), and an extension of a result about the existence of a matrix with prescribed eigenstructure and diagonal entries. Each of these results is of independent interest. Moreover, our char-acterization of nilpotent matrices is sufficiently general to allow us to determine the preservers of many other "inertia classes."  相似文献   

14.
 We study the asymptotic behavior of the convolution powers of a centered density on a connected Lie group G of polynomial volume growth. The main tool is a Harnack inequality which is proved by using ideas from Homogenization theory and by adapting the method of Krylov and Safonov. Applying this inequality we prove that the positive -harmonic functions are constant. We also characterise the -harmonic functions which grow polynomially. We give Gaussian estimates for , as well as for the differences and . We give estimates, similar to the ones given by the classical Berry-Esseen theorem, for and . We use these estimates to study the associated Riesz transforms. Received: 5 July 1999 / Revised version: 8 April 2002 / Published online: 22 August 2002  相似文献   

15.
Burak Aksoylu  Hector Klie 《PAMM》2007,7(1):1020703-1020704
Eigenvalues of smallest magnitude become a major bottleneck for iterative solvers especially when the underlying physical properties have severe contrasts. These contrasts are commonly found in many applications such as composite materials, geological rock properties, and thermal and electrical conductivity. The main objective of this work is to construct a method as algebraic as possible that could efficiently exploit the connectivity of highly heterogeneous media in the solution of diffusion operators. We propose an algebraic way of separating binary-like systems according to a given threshold into high- and low-conductivity regimes of coefficient size O (m) and O (1), respectively where m ≫ 1. The condition number of the linear system depends both on the mesh size and the coefficient size m. For our purposes, we address only the m dependence since the condition number of the linear system is mainly governed by the high-conductivity subblock. Thus, the proposed strategy is inspired by capturing the relevant physics governing the problem. Based on the algebraic construction, a two-stage preconditioning strategy is developed as follows: (1) a first stage that comprises approximation to the components of the solution associated to small eigenvalues and, (2) a second stage that deals with the remaining solution components with a deflation strategy (if ever needed). The deflation strategies are based on computing near invariant subspaces corresponding to smallest eigenvalues and deflating them by the use of recycled the Krylov subspaces. More detail on the proposed preconditioners can be found in [1]. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Let G be the automorphism group of a graph Γ and let λ be an eigenvalue of the adjacency matrix of Γ. In this article, (i) we derive an upper bound for rank(G), (ii) if G is vertex transitive, we derive an upper bound for the extension degree of ?(λ) over ?, (iii) we study automorphism groups of graphs without multiple eigenvalues, (iv) we study spectra of quotient graphs associated with orbit partitions.  相似文献   

17.
Maximal Energy Bipartite Graphs   总被引:1,自引:0,他引:1  
 Given a graph G, its energy E(G) is defined to be the sum of the absolute values of the eigenvalues of G. This quantity is used in chemistry to approximate the total π-electron energy of molecules and in particular, in case G is bipartite, alternant hydrocarbons. Here we show that if G is a bipartite graph with n vertices, then
must hold, characterize those bipartite graphs for which this bound is sharp, and provide an infinite family of maximal energy bipartite graphs. Received: December 1, 2000 Final version received: August 28, 2001 RID="*" ID="*" The author thanks the Swedish Natural Science Research Council (NFR) – grant M12342-300 – for its support. Acknowledgments. The authors would like to thank Ivan Gutman for encouraging them to write this paper, and for helpful discussions on this topic. They also would like to thank Edwin van Dam for his reference concerning connected bipartite regular graphs with four eigenvalues.  相似文献   

18.

The solution of a large-scale Sylvester matrix equation plays an important role in control and large scientific computations. In this paper, we are interested in the large Sylvester matrix equation with large dimensionA and small dimension B, and a popular approach is to use the global Krylov subspace method. In this paper, we propose three new algorithms for this problem. We first consider the global GMRES algorithm with weighting strategy, which can be viewed as a precondition method. We present three new schemes to update the weighting matrix during iterations. Due to the growth of memory requirements and computational cost, it is necessary to restart the algorithm effectively. The deflation strategy is efficient for the solution of large linear systems and large eigenvalue problems; to the best of our knowledge, little work is done on applying deflation to the (weighted) global GMRES algorithm for large Sylvester matrix equations. We then consider how to combine the weighting strategy with deflated restarting, and propose a weighted global GMRES algorithm with deflation for solving large Sylvester matrix equations. In particular, we are interested in the global GMRES algorithm with deflation, which can be viewed as a special case when the weighted matrix is chosen as the identity. Theoretical analysis is given to show rationality of the new algorithms. Numerical experiments illustrate the numerical behavior of the proposed algorithms.

  相似文献   

19.
In this paper we derive an efficient computational procedure for the system in which fluid is produced byN 1 on-off sources of type 1,N 2 on-off sources of type 2 and transferred to a buffer which is serviced by a channel of constant capacity. This is a canonical model for multiservice ATM multiplexing, which is hard to analyze and also of wide interest. This paper's approach to the computation of the buffer overflow probability,G(x) = Pr{buffer content >x}, departs from all prior approaches in that it transforms the computation ofG(x) for a particularx into a recursive construction of an interpolating polynomial. For the particular case of two source types the interpolating polynomial is in two variables. Our main result is the derivation of recursive algorithms for computing the overflow probabilityG(x) and various other performance measures using their respective relations to two-dimensional interpolating polynomials. To make the computational procedure efficient we first derive a new system of equations for the coefficients in the spectral expansion formula forG(x) and then use specific properties of the new system for efficient recursive construction of the polynomials. We also develop an approximate method with low complexity and analyze its accuracy by numerical studies. We computeG(x) for different values ofx, the mean buffer content and the coefficient of the dominant exponential term in the spectral expansion ofG(x). The accuracy of the approximations is reasonable when the buffer utilization characterized by G(0) is more than 10–2.  相似文献   

20.
The Pfaffian method enumerating perfect matchings of plane graphs was discovered by Kasteleyn. We use this method to enumerate perfect matchings in a type of graphs with reflective symmetry which is different from the symmetric graphs considered in [J. Combin. Theory Ser. A 77 (1997) 67, MATCH—Commun. Math. Comput. Chem. 48 (2003) 117]. Here are some of our results: (1) If G is a reflective symmetric plane graph without vertices on the symmetry axis, then the number of perfect matchings of G can be expressed by a determinant of order |G|/2, where |G| denotes the number of vertices of G. (2) If G contains no subgraph which is, after the contraction of at most one cycle of odd length, an even subdivision of K2,3, then the number of perfect matchings of G×K2 can be expressed by a determinant of order |G|. (3) Let G be a bipartite graph without cycles of length 4s, s{1,2,…}. Then the number of perfect matchings of G×K2 equals ∏(1+θ2)mθ, where the product ranges over all non-negative eigenvalues θ of G and mθ is the multiplicity of eigenvalue θ. Particularly, if T is a tree then the number of perfect matchings of T×K2 equals ∏(1+θ2)mθ, where the product ranges over all non-negative eigenvalues θ of T and mθ is the multiplicity of eigenvalue θ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号