首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

2.
A sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for simultaneous determination of R‐bambuterol and its active metabolite R‐terbutaline in human plasma and urine was established. The inhibition for the biotransformation of R‐bambuterol in plasma was fully investigated. Plasma samples were prepared on ice and neostigmine metilsulfate added as a cholinesterase inhibitor immediately after sample collection. All samples were extracted with ethyl acetate and separated on a C18 column under gradient elution with a mobile phase consisting of methanol and water containing 5 mm ammonium acetate at a flow rate of 0.6 mL/min. The analytes were detected by an API 4000 tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method was highly sensitive with the lower limit of quantification (LLOQ) of 10.00 pg/mL for each analyte in plasma. In urine samples, the LLOQs were 20.00 and 500.0 pg/mL for R‐bambuterol and R‐terbutaline, respectively. The intra‐ and inter‐day precisions were <12.7 and <8.6% for plasma and urine, respectively. The analytical runtime within 6.0 min per sample made this method suitable for high‐throughput determination. The validated method has been successfully applied to the human pharmacokinetic study of R‐bambuterol involving 10 healthy volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Formononetin‐7‐O‐β‐d ‐glucoside has been proved to have significant anti‐inflammatory effect. To evaluate its rat pharmacokinetics, a rapid, sensitive, and specific liquid chromatography–tandem mass spectrometry method has been developed and validated for the quantification of formononetin‐7‐O‐β‐d ‐glucoside and its main metabolite formononetin in rat plasma. Samples were pretreated using a simple protein precipitation and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water and acetonitrile both containing 0.1% formic acid. Both analytes were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. The assay showed wide linear dynamic ranges of both 0.10–100 ng/mL, with acceptable intra‐ and inter‐batch accuracy and precision. The lower limits of quantification were both 0.10 ng/mL using 50 μL of rat plasma for two analytes. The method has been successfully used to investigate the oral pharmacokinetic profiles of both analytes in rats. After oral administration of formononetin‐7‐O‐β‐d ‐glucoside at the dose of 50 mg/kg, it was rapidly absorbed in vivo and metabolized to its metabolite formononetin. The plasma concentration‐time profiles both showed double‐peak phenomena, which would be attributed to the strong enterohepatic circulation of formononetin‐7‐O‐β‐d ‐glucoside.  相似文献   

4.
A sensible ultra‐performance LC–MS method was developed and validated for the quantification of clopidogrel active metabolite in human plasma, with clopidogrel D4 as internal standard. Plasma pretreatment involved a one‐step protein precipitation with acetonitrile. The separation was performed by reverse‐phase chromatography on a C8 column. The method was linear over the concentration range of 1–150 ng/mL. The intra‐ and inter‐day precision values were below 17% and accuracy was from 1.7 to 7.5% at all quality control levels. The lower LOQ was 0.8 ng/mL. Sample analysis time was reduced to 5 min including sample preparation (limited to protein precipitation). The present method was successfully applied to a clopidogrel active metabolite pharmacokinetic study following oral administration to healthy volunteers.  相似文献   

5.
A simple and sensitive liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of methylene blue (MB) and its major metabolite, azure B (AZB), in rat plasma. A simple protein precipitation using acetonitrile was followed by injection of the supernatant on to a Zorbax HILIC Plus column (3.5 µm, 2.1 × 100 mm) with isocratic mobile phase consisting of 5 mM ammonium acetate in 10:90 (v/v) water:methanol at a flow rate of 0.3 mL/min and detection in positive ionization mode. The standard curve was linear over the concentration range from 1 to 1000 ng/mL for MB and AZB with coefficient of determination above 0.9930. The lower limit of quantification was 1 ng/mL using 20 μL of rat plasma sample. The intra‐ and inter‐assay precision and accuracy were <12%. The developed analytical method was successfully applied to the pharmacokinetic study of MB and AZB in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and reliable ultra‐high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC‐MS/MS) method was developed and validated for the simultaneous determination of four active components of Semen Cassiae extract (aurantio‐obtusin, chrysoobtusin, obtusin and 1‐desmethylobtusin) in rat plasma after oral administration. Chromatographic separation was achieved on an Agilent Poroshell 120 C18 column with gradient elution using a mobile phase that consisted of acetonitrile‐ammonium acetate in water (30 mm ) at a flow rate of 0.4 mL/min. Detection was performed by a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode. The calibration curve was linear over a range of 3.24–1296 ng/mL for aurantio‐obtusin, 0.77–618 ng/mL for chrysoobtusin, 34.55–1818 ng/mL for obtusin and 1.86–1485 ng/mL for 1‐desmethylobtusin. Inter‐ and intra‐day assay variation was <15%. All analytes were shown to be stable during all sample storage and analysis procedures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats.  相似文献   

9.
A sensitive and specific method was developed and validated for the quantitation of one major metabolite of genipin in rats plasma. The major metabolite was isolated from rat bile via semi‐preparative HPLC technology and its chemical structure was identified as genipin‐1‐o‐glucuronic acid (GNP‐GLU), which was for the first time used as a standard compound for quantitative analysis in rat plasma after administration of genipin. The application of high‐performance liquid chromatography–tandem mass spectrometry in negative mode in multiple reaction monitoring mode was investigated. Chromatographic separation was achieved on an Eclipse XDB‐C18 column using a mobile phase consisting of water with 0.1% formic acid (A)–acetonitrile (B). The limit of detecation was 0.214 ng/mL and the lower limit of quantification was 0.706 ng/mL. The calibration curve was linear from 1.27 to 3810 ng/mL for plasma samples, with a correlation coefficient of 0.9924. The intra‐ and inter‐day precisions and accuracy were all within 15%. The recoveries of GNP‐GLU and puerarin were above 90.0 and 76.2%, respectively. The highly sensitive method was successfully applied to estimate pharmacokinetic parameters of GNP‐GLU following oral and intravenous administration of genipin to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A simple, rapid and sensitive liquid chromatography–tandem mass spectroscopy (LC–MS/MS) method was developed and validated for the determination of ethyl gallate, a pharmacologically active constituent isolated from Lagerstroemia speciosa (Linn.) Pers. This method was used to examine the pharmacokinetics of ethyl gallate and its major metabolite gallic acid in rat plasma using propyl gallate as an internal standard. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a Zorbax SB‐C18 column (3.5 μm, 2.1 × 50 mm) with an isocratic mobile phase consisted of methanol–acetonitrile–10 mM ammonium acetate (10 : 25 : 65, v/v/v) containing 0.1% formic acid at a flow rate of 0.25 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple‐reaction monitoring mode using the electrospray ionization technique in negative mode. The lower limits of quantification of gallic acid and ethyl gallate of the method were 0.5 and 1.0 ng/mL. The intra‐day and inter‐day accuracy and precision of the assay were less than 8.0%. This method has been applied successfully to a pharmacokinetic study involving the intragastric administration of ethyl gallate to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The authors proposed a sensitive, selective and rapid liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay procedure for the quantification of lurasidone and its active metabolite, i.e. ID‐14283 in human plasma simultaneously using corresponding isotope labeled compounds as internal standards as per regulatory guidelines. After liquid–liquid extraction with tert‐butyl methyl ether, the analytes were chromatographed on a C18 column using an optimized mobile phase composed of 5 mm ammonium acetate (pH 5.0) and acetonitrile (15:85, v/v) and delivered at a flow rate of 1.00 mL/min. The assay exhibits excellent linearity in the concentration ranges of 0.25–100 and 0.10–14.1 ng/mL for lurasidone and ID‐14283, respectively. The precision and accuracy results over five concentration levels in four different batches were well within the acceptance limits. Lurasidone and ID‐14283 were found to be stable in battery of stability studies. The method was rapid with the chromatographic run time 2.5 min, which made it possible to analyze 300 samples in a single day. Additionally, this method was successfully used to estimate the in vivo plasma concentrations of lurasidone and ID‐14283 obtained from a pharmacokinetic study in south Indian male subjects and the results were authenticated by conducting incurred samples reanalysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This report describes the development and validation of a chromatography/tandem mass spectrometry method for the quantitative determination of pravastatin and its metabolite (3α‐hydroxy pravastatin) in plasma and urine of pregnant patients under treatment with pravastatin, as part of a clinical trial. The method includes a one‐step sample preparation by liquid–liquid extraction. The extraction recovery of the analytes ranged between 93.8 and 99.5% in plasma. The lower limits of quantitation of the analytes in plasma samples were 0.106 ng/mL for pravastatin and 0.105 ng/mL for 3α‐hydroxy pravastatin, while in urine samples they were 19.7 ng/mL for pravastatin and 2.00 ng/mL for 3α‐hydroxy pravastatin. The relative deviation of this method was <10% for intra‐ and interday assays in plasma and urine samples, and the accuracy ranged between 97.2 and 106% in plasma, and between 98.2 and 105% in urine. The method described in this report was successfully utilized for determining the pharmacokinetics of pravastatin in pregnant patients enrolled in a pilot clinical trial for prevention of preeclampsia. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A fast, sensitive and reliable ultra performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantitation and pharmacokinetic study of five tanshinones (tanshinone I, tanshinone IIA, tanshinone IIB, dihydrotanshinone I, cryptotanshinone), the bio‐active ingredients of Huo Luo Xiao Ling Dan (HLXLD) in rat plasma. After liquid–liquid extraction, chromatographic separation was accomplished on a Shim‐pack XR‐ODS column (75 × 3.0 mm, 2.2 µm particles) and eluted with a mobile phase consisting of acetonitrile–0.05% formic acid aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min, and the total run time was 7.0 min. The detection was performed on a triple quadrupole tandem mass spectrometry equipped with an electrospray ionization source in positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.050–0.400 ng/mL for all the analytes. Linearity, precision and accuracy, the mean extraction recoveries and matrix effects all satisfied criteria for acceptance. This validated method was successfully applied to a comparative pharmacokinetic study of five bio‐active components in rat plasma after oral administration of HLXLD or Salvia miltiorrhiza extract in normal and arthritic rats. The results showed that there were different pharmacokinetic characteristics among different groups. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A simple and reliable LC‐ESI‐MS method for the determination of peimine and peiminine in rat plasma was developed for the first time. The method was proven to be specific and sensitive by carrying out validation. The analytes were extracted from rat plasma via solid‐phase extraction on Waters Oasis MCX cartridges. Chromatography separation was achieved on a C18 column using 10 mM ammonium acetate (adjusted to pH 3.0 with glacial acetic acid)–acetonitrile (85:15, v/v) as mobile phase. The linear range was 1–100 ng/mL for peimine and peiminine. Intra‐ and inter‐day precisiond were less than 10%. Accuracies were within 85–115% of their nominal concentrations. The limit of quantification was 1 ng/mL for both analytes. The developed assay was successfully applied to pharmacokinetic study of peimine and peiminine in rats orally administered the alkaloids extracts from Bulbus Fritillariae, demonstrating a possible broader spectrum of applications of this method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   

18.
A new liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of trifolirhizin, (–)‐maackiain, (–)‐sophoranone, and 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran from Sophora tonkinensis in rat plasma using chlorpropamide as an internal standard. Plasma samples (50 μL) were prepared using a simple deproteinization procedure with 150 μL of acetonitrile containing 100 ng/mL of chlorpropamide. Chromatographic separation was carried out on an Acclaim RSLC120 C18 column (2.1 × 100 mm, 2.2 μm) using a gradient elution consisting of 7.5 mM ammonium acetate and acetonitrile containing 0.1% formic acid (0.4 mL/min flow rate, 7.0 min total run time). The detection and quantitation of all analytes were performed in selected reaction monitoring mode under both positive and negative electrospray ionization. This assay was linear over concentration ranges of 50–5000 ng/mL (trifolirhizin), 25–2500 ng/mL ((–)‐maackiain), 5–250 ng/mL ((–)‐sophoranone), and 1–250 ng/mL 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran) with a lower limit of quantification of 50, 25, 5, and 1 ng/mL for trifolirhizin, (–)‐maackiain, (–)‐sophoranone, and 2‐(2,4‐dihydroxyphenyl)‐5,6‐methylenedioxybenzofuran, respectively. All the validation data, including the specificity, precision, accuracy, recovery, and stability conformed to the acceptance requirements. The results indicated that the developed method is sufficiently reliable for the pharmacokinetic study of the analytes following oral administration of Sophora tonkinensis extract in rats.  相似文献   

19.
A liquid chromatography–tandem mass spectrometric method for the quantification of granisetron and its major metabolite, 7‐hydroxy granisetron in human plasma and urine samples was developed and validated. Respective stable isotopically labeled granisetron and 7‐hydroxy granisetron were used as internal standards (IS). Chromatography was performed using an Xselect HSS T3 analytical column with a mobile phase of 20% acetonitrile in water (containing 0.2 mM ammonium formate and 0.14% formic acid, pH 4) delivered in an isocratic mode. Tandem mass spectrometry operating in positive electrospray ionization mode with multiple reaction monitoring was used for quantification. The standard curves were linear in the concentration ranges of 0.5–100 ng/mL for granisetron and 0.1–100 ng/mL for 7‐hydroxy granisetron in human plasma samples, and 2–2000 ng/mL for granisetron and 2–1000 ng/mL for 7‐hydroxy granisetron in human urine samples, respectively. The accuracies were >85% and the precision as determined by the coefficient of variations was <10%. No significant matrix effects were observed for granisetron or 7‐hydroxy granisetron in either plasma or urine samples. Granisetron was stable under various storage and experimental conditions. This validated method was successfully applied to a pharmacokinetic study after intravenous administration of 1 mg granisetron to a pregnant subject. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, sensitive and specific method using ultraperformance liquid chromatography/tandem mass spectrometry (UPLC‐MS/MS) was developed to determine sunitinib and N‐desethyl sunitinib in mouse plasma and tissues. The analytes were separated by an isocratic mobile phase consisting of acetonitrile and buffer solution (water with 0.1% formic acid and 5 m m ammonium acetate; 40: 60, v/v) running at a flow rate of 0.35 mL/min for 2 min. Quantification was performed using a mass spectrometer by multiple reaction monitoring in positive electrospray ionization mode. The transition was monitored at m/z 399 → 283, m/z 371 → 283 and m/z 327 → 270 for sunitinib, N‐desethyl sunitinib and internal standard, respectively. Calibration curves were linear over concentration ranges of 2–500, 0.5–50 and 1–250 ng/mL for plasma, heart and other biosamples. The method was successfully applied to animal experiments. The pharmacokinetic study indicated that sunitinib was eliminated quickly in mice with a half‐life of 1.2 h; tissue distribution data showed more sunitinib and its metabolite in liver, spleen and lung, which provided reference for further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号