首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, a modified characteristics finite element method for the time dependent Navier–Stokes/Darcy problem with the Beavers–Joseph–Saffman interface condition is presented. In this method, the Navier–Stokes/Darcy equation is decoupled into two equations, one is the Navier–Stokes equation, the other is the Darcy equation, and the Navier–Stokes equation is solved by the modified characteristics finite element method. The theory analysis shows that this method has a good convergence property. In order to show the effect of our method, some numerical results was presented. The numerical results show that this method is highly efficient. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this article, we propose a two‐level finite element method to analyze the approximate solutions of the stationary Navier‐Stokes equations based on a stabilized local projection. The local projection allows to circumvent the Babuska‐Brezzi condition by using equal‐order finite element pairs. The local projection can be used to stabilize high equal‐order finite element pairs. The proposed method combines the local projection stabilization method and the two‐level method under the assumption of the uniqueness condition. The two‐level method consists of solving a nonlinear equation on the coarse mesh and solving a linear equation on fine mesh. The nonlinear equation is solved by the one‐step Newtonian iteration method. In the rest of this article, we show the error analysis of the lowest equal‐order finite element pair and provide convergence rate of approximate solutions. Furthermore, the numerical illustrations coincide with the theoretical analysis expectations. From the view of computational time, the results show that the two‐level method is effective to solve the stationary Navier‐Stokes equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

3.
In this article, we consider the coupled Navier–Stokes and Darcy problem with the Beavers–Joseph interface condition. With suitable restrictions of physical parameters α and ν, we prove the existence and local uniqueness of a weak solution. Then we propose a coupled finite element scheme and a decoupled and linearized scheme based on two‐grid finite element. Under suitable further restrictions, their optimal error estimates are obtained. Finally numerical experiments indicate the validity of the theoretical results as well as the efficiency and effectiveness of the decoupled and linearized two‐grid algorithm. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1009–1030, 2015  相似文献   

4.
This article proposes and analyzes a multilevel stabilized finite volume method(FVM) for the three‐dimensional stationary Navier–Stokes equations approximated by the lowest equal‐order finite element pairs. The method combines the new stabilized FVM with the multilevel discretization under the assumption of the uniqueness condition. The multilevel stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh thus only solving one large linear systems. The error analysis shows that the multilevel‐stabilized FVM provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hjhj‐12, j = 1,…,J. Therefore, the multilevel stabilized FVM is more efficient than the standard one‐level‐stabilized FVM. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
Although the numerical results suggest the optimal convergence order of the two-grid finite element decoupled scheme for mixed Stokes–Darcy model with Beavers–Joseph–Saffman interface condition in literatures, the numerical analysis only gets the optimal error order for porous media flow and a non-optimal error order that is half order lower than the optimal one in fluid flow. The purpose of this paper is to fill in the gap between the numerical results and the theoretical analysis.  相似文献   

6.
In this article, we present a stabilized mixed finite element method for solving the coupled Stokes and Darcy‐Forchheimer flows problem. The approach utilizes the same nonconforming Crouzeix‐Raviart element and piecewise constant on the entire domain for the velocity and pressure respectively. We derive a discrete inf‐sup condition and establish the existence and uniqueness of the problem. Optimal‐order error estimates are obtained based on the monotonicity owned by Forchheimer term. Finally, numerical examples are presented to verify the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1070–1094, 2017  相似文献   

7.
Based on two‐grid discretizations, a two‐parameter stabilized finite element method for the steady incompressible Navier–Stokes equations at high Reynolds numbers is presented and studied. In this method, a stabilized Navier–Stokes problem is first solved on a coarse grid, and then a correction is calculated on a fine grid by solving a stabilized linear problem. The stabilization term for the nonlinear Navier–Stokes equations on the coarse grid is based on an elliptic projection, which projects higher‐order finite element interpolants of the velocity into a lower‐order finite element interpolation space. For the linear problem on the fine grid, either the same stabilization approach (with a different stabilization parameter) as that for the coarse grid problem or a completely different stabilization approach could be employed. Error bounds for the discrete solutions are estimated. Algorithmic parameter scalings of the method are also derived. The theoretical results show that, with suitable scalings of the algorithmic parameters, this method can yield an optimal convergence rate. Numerical results are provided to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 425–444, 2017  相似文献   

8.
In this article, we develop a branch of nonsingular solutions of a Picard multilevel stabilization of mixed finite volume method for the 2D/3D stationary Navier‐Stokes equations without relying on the unique solution condition. The method presented consists of capturing almost all information of initial problem (the nonlinear problems) on the coarsest mesh and then performs one Picard defect correction (the linear problems) on each subsequent mesh based on previous information thus only solving one large linear systems. What is more, the method presented can results in a better coefficient matrix in the model presented with small viscosity. Theoretical results show that the method presented is derived with the convergence rate of the same order as the corresponding finite volume method/finite element method solving the stationary Navier‐Stokes equations on a fine mesh. Therefore, the method presented is definitely more efficient than the standard finite volume method/finite element method. Finally, numerical experiments clearly show the efficiency of the method presented for solving the stationary Navier‐Stokes equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 30–50, 2018  相似文献   

9.
In this article, we give some numerical techniques and error estimates using web‐spline based mesh‐free finite element method for the heat equation and the time‐dependent Navier–Stokes equations on bounded domains. The web‐spline method uses weighted extended B‐splines on a regular grid as basis functions and does not require any grid generation. We demonstrate the method by providing numerical results for the Poisson's and stationary Stokes equation. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

10.
The coupled problem for a generalized Newtonian Stokes flow in one domain and a generalized Newtonian Darcy flow in a porous medium is studied in this work. Both flows are treated as a first‐order system in a stress‐velocity formulation for the Stokes problem and a volumetric flux‐hydraulic potential formulation for the Darcy problem. The coupling along an interface is done using the well‐known Beavers–Joseph–Saffman interface condition. A least squares finite element method is used for the numerical approximation of the solution. It is shown that under some assumptions on the viscosity the error is bounded from above and below by the least squares functional. An adaptive refinement strategy is examined in several numerical examples where boundary singularities are present. Due to the nonlinearity of the problem a Gauss–Newton method is used to iteratively solve the problem. It is shown that the linear variational problems arising in the Gauss–Newton method are well posed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1150–1173, 2015  相似文献   

11.
Optimal estimates on stabilized finite volume methods for the three dimensional Navier–Stokes model are investigated and developed in this paper. Based on the global existence theorem [23], we first prove the global bound for the velocity in the H1‐norm in time of a solution for suitably small data, and uniqueness of a suitably small solution by contradiction. Then, a full set of estimates is then obtained by some classical Galerkin techniques based on the relationship between finite element methods and finite volume methods approximated by the lower order finite elements for the three dimensional Navier–Stokes model.  相似文献   

12.
A stabilized finite volume method for solving the transient Navier–Stokes equations is developed and studied in this paper. This method maintains conservation property associated with the Navier–Stokes equations. An error analysis based on the variational formulation of the corresponding finite volume method is first introduced to obtain optimal error estimates for velocity and pressure. This error analysis shows that the present stabilized finite volume method provides an approximate solution with the same convergence rate as that provided by the stabilized linear finite element method for the Navier–Stokes equations under the same regularity assumption on the exact solution and a slightly additional regularity on the source term. The stability and convergence results of the proposed method are also demonstrated by the numerical experiments presented.  相似文献   

13.
In this paper, we consider low‐order stabilized finite element methods for the unsteady Stokes/Navier‐Stokes equations with friction boundary conditions. The time discretization is based on the Euler implicit scheme, and the spatial discretization is based on the low‐order element (P1P1 or P1P0) for the approximation of the velocity and pressure. Moreover, some error estimates for the numerical solution of fully discrete stabilized finite element scheme are obtained. Finally, numerical experiments are performed to confirm our theoretical results.  相似文献   

14.
This work combines two complementary strategies for solving the steady incompressible Navier–Stokes model with a zeroth‐order term, namely, a stabilized finite element method and a mesh–refinement approach based on an error estimator. First, equal order interpolation spaces are adopted to approximate both the velocity and the pressure while stability is recovered within the stabilization approach. Also designed to handle advection dominated flows under zeroth‐order term influence, the stabilized method incorporates a new parameter with a threefold asymptotic behavior. Mesh adaptivity driven by a new hierarchical error estimator and built on the stabilized method is the second ingredient. The estimator construction process circumvents the saturation assumption by using an enhancing space strategy which is shown to be equivalent to the error. Several numerical tests validate the methodology. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

15.
A second‐order decoupled algorithm for the nonstationary Stokes‐Darcy system, which allows different time steps in two subregions, is proposed and analyzed in this paper. The algorithm, which is a combination of the second‐order backward differentiation formula and second‐order extrapolation method, uncouples the problem into two decoupled problems per time step. We prove the unconditional stability and long‐time stability of the decoupled scheme with different time steps and derive error estimates of this decoupled algorithm using finite element spatial discretization. Numerical experiments are provided to illustrate the accuracy, effectiveness, and stability of the decoupled algorithm and show its advantages of increasing accuracy and efficiency.  相似文献   

16.
In this paper, a linear decoupled fractional time stepping method is proposed and developed for the nonlinear fluid–fluid interaction governed by the two Navier–Stokes equations. Partitioned time stepping method is applied to two‐physics problems with stiffness of the coupling terms being treated explicitly and is also unconditionally stable. As for each fluid, the velocity and pressure are respectively determined by just solving one vector‐valued quasi‐elliptic equation and the Possion equation with homogeneous Neumann boundary condition per time step. Therefore, the cost of the fluid–fluid interaction is dominant to solve four simple linear equations, which greatly reduces the computational cost of the whole system. The method exploits properties of the fluid–fluid system to establish its stability and convergence with the same results as the standard scheme. Finally, numerical experiments are presented to show the performance of the proposed method.  相似文献   

17.
Peng  Hui  Zhai  Qilong  Zhang  Ran  Zhang  Shangyou 《中国科学 数学(英文版)》2021,64(10):2357-2380
In this paper, we propose a new numerical scheme for the coupled Stokes-Darcy model with the Beavers-Joseph-Saffman interface condition. We use the weak Galerkin method to discretize the Stokes equation and the mixed finite element method to discretize the Darcy equation. A discrete inf-sup condition is proved and the optimal error estimates are also derived. Numerical experiments validate the theoretical analysis.  相似文献   

18.
19.
In this article, a decoupling scheme based on two‐grid finite element for the mixed Stokes‐Darcy problem with the Beavers‐Joseph interface condition is proposed and investigated. With a restriction of a physical parameter α, we derive the numerical stability and error estimates for the scheme. Numerical experiments indicate that such two‐grid based decoupling finite element schemes are feasible and efficient. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1066–1082, 2014  相似文献   

20.
A finite volume method based on stabilized finite element for the two‐dimensional nonstationary Navier–Stokes equations is investigated in this work. As in stabilized finite element method, macroelement condition is introduced for constructing the local stabilized formulation of the nonstationary Navier–Stokes equations. Moreover, for P1 ? P0 element, the H1 error estimate of optimal order for finite volume solution (uh,ph) is analyzed. And, a uniform H1 error estimate of optimal order for finite volume solution (uh, ph) is also obtained if the uniqueness condition is satisfied. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号