首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Particle‐in‐Cell (PIC) method was used to study two different ion thruster concepts: Hall Effect Thrusters (HETs) and High Efficiency Multistage Plasma Thrusters (HEMPs), in particular the plasma properties in the discharge chamber due to the different magnetic field configurations. Special attention was paid to the simulation of plasma particles fluxes on the thrusters inner surfaces. In both cases PIC proved itself as a powerful tool, delivering important insight into the basic physics of the different thruster concepts.The simulations demonstrated that the new HEMP thruster concept allows for a high thermal efficiency due to both minimal energy dissipation and high acceleration efficiency. In the HEMP thruster the plasma contact to the wall is limited only to very small areas of the magnetic field cusps, which results in much smaller ion flux to the thruster channel surface as compared to HET. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
The application of a two‐dimensional photon‐counting detector based on a micro‐pixel gas chamber (µ‐PIC) to high‐resolution small‐angle X‐ray scattering (SAXS), and its performance, are reported. The µ‐PIC is a micro‐pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the µ‐PIC in SAXS experiments at SPring‐8. A dynamic range of >105 was obtained for X‐ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high‐angle region in one accumulation of photons.  相似文献   

4.
This paper describes an experiment design based on numerical simulations to measure the equation‐of‐state properties of high‐energy‐density (HED) matter using intense particle beams. The simulations are performed using a 2D hydrodynamic computer code, BIG2, while the beam parameters are considered to match the Facility for Antiprotons and Ion Research beam. This study has shown that in such experiments one can generate different phases of HED lead. Similar calculations are planned for other materials.  相似文献   

5.
Lithium‐ion batteries (LIBs) have been extensively investigated due to the ever‐increasing demand for new electrode materials for electric vehicles (EVs) and clean energy storage. A wide variety of nano/microstructured LIBs electrode materials are hitherto created via self‐assembly, ranging from 0D nanospheres; 1D nanorods, nanowires, or nanobelts; and 2D nanofilms to 3D nanorod array films. Nanoparticles can be utilized to build up integrated architectures. Understanding of nanoparticles’ self‐assembly may provide information about their organization into large aggregates through low‐cost, high‐efficiency, and large‐scale synthesis. Here, the focus is on the recent advances in preparing hierarchically nano/microstructured electrode materials via self‐assembly. The hierarchical electrode materials are assembled from single component, binary to multicomponent building blocks via different driving forces including diverse chemical bonds and non‐covalent interactions. It is expected that nanoparticle engineering by high‐efficient self‐assembly process will impact the development of high‐performance electrode materials and high‐performance LIBs or other rechargeable batteries.  相似文献   

6.
To suit a wide variety of space mission profiles, different designs of ion thrusters were developed, such as the High-Efficiency-Multistage-Plasma thrusters (HEMP-T). In the past, the optimization of ion thrusters was a difficult and time-consuming process and evolved experimentally. Because the construction of new designs is expensive, cheaper methods for optimization were sought-after. Computer-based simulations are a cheap and useful method towards predictive modelling. The physics in HEMP-T requires a kinetic model. The Particle-in-Cell (PIC) method delivers self-consistent solutions for the plasmas of ion thrusters, but it is limited by the high amount of computing time required to study a specific system. Therefore, it is not suited to explore a wide operational and design space. An approach to decrease computing time is self-similarity scaling schemes, which can be derived from the kinetic equations. One specific self-similarity scheme is investigated quantitatively in this work for selected HEMP-Ts, using PIC simulations. The possible application of the scaling is explained and the limits of this approach are derived.  相似文献   

7.
The electrostatic simulations of the radio frequency (RF) heating mechanism, excitations, and ionization process of an electron plasma are carried out using a two‐dimensional (2D) particle‐in‐cell (PIC) code. RF drives with excitation frequencies of 1–15 MHz and amplitudes of 5 and 10 V were applied at two different axial positions, to the centre and to one end on the electrode stack of the ELTRAP device, at ultra‐high vacuum conditions. It is observed that the axial kinetic energy (eV) profile of the confined electrons increases with an increase of the RF excitation amplitudes, and densities from 5 × 107 to 1012 m?3 for all cases under consideration. The simulation results indicate that with continuous RF excitations, the electron heating in the beginning is higher at the trap wall of the device and extends towards the central region of the trap over a simulation time of up to 100 µs. These results on the electron heating are in good agreement with the experimental findings (optical diagnostics of ELTRAP). The heating effect is larger when the RF power is applied from the position close to one end of the trap in comparison to the central position. Monte–Carlo PIC simulations with hydrogen as a background gas are also performed to evaluate the ionization process at pressures of 10?8, 10?7, and 10?6 torr using the same electron plasma densities. The results show that at increasing pressures, the electron‐neutral collisions rate increases linearly with the background gas pressure. Increased collision frequency is obtained at higher RF drive amplitudes, which proportionally increases electron temperature, so that more ionization and secondary electrons are generated.  相似文献   

8.
An optimization of the undulator layout of X‐ray free‐electron‐laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state‐of‐the‐art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X‐ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high‐power FEL pulses.  相似文献   

9.
By using relativistic massively parallel PIC code MANDOR, which features arbitrary target design including 3D micro‐structuring, a study of ion acceleration in short laser pulse interaction with different thin targets has been performed. Based on 3D simulation results it has been shown that micro‐structures on the front surface of thin plane targets increase a number and energy of hot electrons in comparison with that for the case of pure plain foils of optimal thickness. As a result, the energy of accelerated ions also increases up to 50%. However, the efficiency of ion acceleration from structured target reduces with laser pulse intensity increase, so that for laser pulses of ultra‐relativistic intensity a positive role of surface micro‐structuring diminishes. We have also studied to which extent a sub‐ps imperfection of the laser pulse shape, which smoothes the surface micro‐structures suppresses high‐energy ion generation. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
An engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop®, a material commonly used to fabricate X‐ray absorbers at X‐ray synchrotron facilities. This dispersion‐strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop® X‐ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X‐ray power from APS insertion devices was used to expose 30 GlidCop® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature‐dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X‐ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X‐ray absorber designs.  相似文献   

11.
Controlled aggregation of nanoparticles into superlattices is a grand challenge in material science, where ligand based self‐assembly is the dominant route. Here, the self‐assembly of gold nanoparticles (AuNPs) that are crosslinked by water soluble oligo‐(ethylene glycol)‐dithiol (oEG‐dithiol) is reported and their 3D structure by small angle X‐ray scattering is determined. Surprisingly, a narrow region is found in the parameter space of dithiol linker‐length and nanoparticle size for which the crosslinked networks form short‐ranged FCC crystals. Using geometrical considerations and numerical simulations, the stability of the formed lattices is evaluated as a function of dithiol length and the number of connected nearest‐neighbors, and a phase diagram of superlattice formation is provided. Identifying the narrow parameter space that allows crystallization facilitates focused exploration of linker chemical composition and medium conditions such as thermal annealing, pH, and added solutes that may lead to superior and more robust crystals.  相似文献   

12.
Topology optimization is a computational tool that can be used for the systematic design of photonic crystals, waveguides, resonators, filters and plasmonics. The method was originally developed for mechanical design problems but has within the last six years been applied to a range of photonics applications. Topology optimization may be based on finite element and finite difference type modeling methods in both frequency and time domain. The basic idea is that the material density of each element or grid point is a design variable, hence the geometry is parameterized in a pixel‐like fashion. The optimization problem is efficiently solved using mathematical programming‐based optimization methods and analytical gradient calculations. The paper reviews the basic procedures behind topology optimization, a large number of applications ranging from photonic crystal design to surface plasmonic devices, and lists some of the future challenges in non‐linear applications.  相似文献   

13.
In this work, we fabricated a novel BeZnO based dual‐color UV photodetector through a one‐step electron beam evaporation of asymmetric Ti/Au pair. A dual‐phase BeZnO alloy film with dual bandgap of ∼3.5 eV (∼355 nm) and ∼4.6 eV(∼270 nm) was artfully utilized as active layer to realize dual‐color response. This photodetector shows a noticeable photovoltaic characteristic and can be utilized as an excellent self‐powered device. The device exhibits two cut‐off response wavelengths at ∼275 nm and ∼360 nm under zero bias, which are corresponding to UVA and UVC region, respectively. According to the dynamic response spectra under UV radiation, the device presents excellent stability and reproducibility without external power supply. In addition, the device has an ultrafast response speed, with a rise time of ∼35 μs and a decay time of ∼880 μs. Finally, a physical model based on energy band theory is proposed to demonstrate that the self‐powered behavior is attributed to the asymmetric Schottky barrier heights caused by the hole‐trapping process occurred in electrode/BeZnO interface. To the best of our knowledge, this is the first report on BeZnO based self‐powered UV photodetector. Our findings demonstrate a novel and facile route to realize high performance self‐powered UV photodetectors for multipurposes.  相似文献   

14.
为克服全电磁粒子模拟(PIC)程序不利于优化设计的弱点,提高高功率微波器件的优化设计水平,将遗传算法与全电磁粒子模拟算法有机融合,研制出二维全电磁粒子模拟并行优化程序。据此对高功率微波源器件——两个波段的磁绝缘线振荡器(MILO):C-MILO和L-MILO进行优化设计。在输入功率不变的条件下,原C-MILO效率为10.8%,经优化后效率为15.4%;原L-MILO效率为12.6%,经优化后效率为17.7%。由此得出,两类MILO模型经优化后在输入功率基本不变的情况下输出功率和效率都有很大程度的提高,且模型几何参数合理,物理图像正确。  相似文献   

15.
Motivated by the recent experimental determination of the 3D Fermi surface of overdoped La‐based cuprate superconductors, the tight‐binding parameterization of their conduction band is revisited. A minimal tight‐binding model entailing eight orbitals, two of them involving apical oxygen ions is constructed. Parameter optimization allows to almost perfectly reproduce the 3D conduction band as obtained from density functional theory (DFT). It is discussed how each parameter entering this multiband model influences it, and show that the peculiar form of its dispersion severely constraints the parameter values. It is evidenced that standard perturbative derivation of an effective one‐band model is poorly converging because of the comparatively small value of the charge transfer gap. Yet, this allows to unravel the microscopical origin of the in‐plane and out‐of‐plane hopping amplitudes. An alternative approach to the computation of the tight‐binding parameters of the effective model is presented and worked out. It results that the agreement with DFT is preserved provided longer‐ranged hopping amplitudes are retained. A comparison with existing models is also performed. Finally, the Fermi surface, showing staggered pieces alternating in size and shape, is compared to experiment, with the density of states also being calculated.  相似文献   

16.
17.
DESIRS is a new undulator‐based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas‐phase studies of molecular and electronic structures, reactivity and polarization‐dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier‐transform spectrometer (FTS) for ultra‐high‐resolution absorption spectroscopy (resolving power up to 106) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5–40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m‐long pure electromagnetic variable‐polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi‐perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic‐free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre‐focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off‐plane normal‐incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm?1, allowing the flux‐to‐resolution trade‐off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 1010–1011 photons s?1 range in a 1/50000 bandwidth, and 1012–1013 photons s?1 in a 1/1000 bandwidth, which is very satisfactory although slightly below optical simulations. All of these features make DESIRS a state‐of‐the‐art VUV beamline for spectroscopy and dichroism open to a broad scientific community.  相似文献   

18.
In this Letter, a GaN‐based high‐power (HP) single‐chip (SC) large‐area LED with parallel and series network structure is fabricated. The optical characteristics of the HP‐SC LED is investigated. Driven at 600 mA, the optical output power of the HP‐SC LED chip is measured to be 9.7 W, corresponding to an EQE of 26.4%, which is 19.6% lower than that of the standard small LED cell due to both the lateral light‐extraction efficiency degradation and the self‐heating effect. A statistical analysis was carried out to investigate the yield of the fabricated HP‐SC LEDs, the experimental results agree with the theoretical calculations very well, validating the feasibility of this design on the production yield for the large‐area LEDs.

  相似文献   


19.
The dynamic properties of ion‐electron two‐component plasmas (TCP) are studied by using classical molecular dynamics (MD) simulations. There is a variety of time dependent and structural results that MD is able to provide in complement to other methods, e.g., useful micro‐field sequences can be generated. The method deals with some specific difficulties: the mass ratio between ions and electrons enforces very small time‐steps appropriate to follow electrons motion while, ions must move significantly in order to build, self consistently, their spatial structure. This results in expensive simulations. Electron trajectories are trapped and de‐trapped with multiple electron collisions around ions resulting in the occurrence of quasi metastable bound electron states. An analysis of micro‐fields at neutral in a hydrogen plasma reveals the need to consider a complete hierarchy of time scales extended typically over 7 order of magnitude, i.e., from a time‐step: ~10‐19s, to a time required to obtain statistical averages, ~10‐11s. In order to extend the MD capabilities in representing real coupled plasmas a classical ionization/recombination process has been implemented allowing to follow the evolution of plasmas involving several ion stages and model the ionization balance. Here again TCP simulations deal with extended time‐scale providing information about relaxation of non equilibrium plasma states (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
LIPS-200离子推力器热特性模拟分析研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了对20cm口径LIPS-200环形会切磁场离子推力器的热设计研究提出优化建议,利用LIPS-200离子推力器内部放电能量沉积数学模型计算结果开展推力器的稳态和瞬态热分析,并进行热平衡试验加以验证。结果显示:当推力器处于稳态工作时,其内部磁钢的温度分布是影响推力器热设计的关键因素,而通过提高推力器内外部件的表面发射率,可以使内部关键部件温度降低50~60℃,相关热平衡试验验证结果与仿真分析结果基本吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号