首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium‐ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony‐doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as‐synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO‐decorated natural graphite (c/ATO‐NG) is produced. In the (carbon/ATO) dual‐layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO‐NG anode materials display significant improvements in capacity (530 mA h g?1), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full‐cell consisting of a c/ATO‐NG anode and an LiNi0.5Mn1.5O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual‐layer coating concept proposed herein opens a new route toward high‐performance anode materials for lithium‐ion batteries.  相似文献   

2.
A novel method to fabricate lithium-ion polymer batteries (LiPBs) has been developed. The LiPBs was fabricated without microporous polyolefin separators, taking spinel lithium manganese oxide (LiMn2O4) and natural graphite (NG) as the electrodes. The thicknesses of the cathodes and the anodes are 190 and 110 μm, respectively. The NG anode was coated with a microporous composite polymer film (20 μm thick) which composed of polymer and ultrafine particles. The coating process was effective and simple to be used in practical application, and ensured the composite polymer film to act as a good separator in the LiPB. The LiPBs assembled with the coated NG anodes and pristine LiMn2O4 cathodes presented better electrochemical performances than liquid lithium-ion battery counterparts, proving that the microporous composite polymer film can improve the performance of the coated NG anode. In this paper, the spinel LiMn2O4/(coated)NG-based LiPBs exhibited high rate capability, compliant temperature reliability, and significantly, excellent cycling performance under the elevated temperature (55°C).  相似文献   

3.
α‐Fe2O3 nanoparticles are uniformly coated on the surface of α‐MoO3 nanorods through a two‐step hydrothermal synthesis method. As the anode of a lithium‐ion battery, α‐Fe2O3@α‐MoO3 core–shell nanorods exhibit extremely high lithium‐storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α‐Fe2O3@α‐MoO3 core–shell nanorods is 1481 mA h g?1 and a value of 1281 mA h g?1 is retained after 50 cycles, which is much higher than that retained by bare α‐MoO3 and α‐Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α‐Fe2O3 and α‐MoO3, the small size effect, one‐dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core–shell nanocomposites have potential applications as high‐performance lithium‐ion batteries.  相似文献   

4.
A magnetically separable catalyst Al2O3‐MgO/Fe3O4 was prepared by Al2O3‐MgO supported on magnetic oxide Fe3O4 and charactered by FT‐IR, XRD and SEM. The mixed oxides afforded high catalytic activity and selectivity for synthesis of 1‐phenoxy‐2‐propanol from phenol and propylene oxide with 80.3% conversion and 88.1% selectivity to 1‐phenoxy‐2‐propanol. Especially, facile separation of the catalyst by a magnet was obtained and the catalytic performance of the recovered catalyst was unaffected even at the forth run.  相似文献   

5.
Hydrogen production from coal gasification provides a cleaning approach to convert coal resource into chemical energy, but the key procedures of coal gasification and thermal catalytic water–gas shift (WGS) reaction in this energy technology still suffer from high energy cost. We herein propose adopting a solar–driven WGS process instead of traditional thermal catalysis, with the aim of greatly decreasing the energy consumption. Under light irradiation, the CuOx/Al2O3 delivers excellent catalytic activity (122 μmol gcat?1 s?1 of H2 evolution and >95 % of CO conversion) which is even more efficient than noble‐metal‐based catalysts (Au/Al2O3 and Pt/Al2O3). Importantly, this solar‐driven WGS process costs no electric/thermal power but attains 1.1 % of light‐to‐energy storage. The attractive performance of the solar‐driven WGS reaction over CuOx/Al2O3 can be attributed to the combined photothermocatalysis and photocatalysis.  相似文献   

6.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

7.
A nanostructured Mn3O4/C electrode was prepared by a one‐step polyol‐assisted pyro‐synthesis without any post‐heat treatments. The as‐prepared Mn3O4/C revealed nanostructured morphology comprised of secondary aggregates formed from carbon‐coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn3O4/C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g?1 at a current density of 33 mA g?1, good capacity retentions (1141 mAh g?1 with 100 % Coulombic efficiencies at the 100th cycle), and rate capabilities (307 and 202 mAh g?1 at 528 and 1056 mA g?1, respectively) when tested as an anode for lithium‐ion battery applications.  相似文献   

8.
The oxidant‐free dehydrogenation of n‐pentanol over copper based catalysts was investigated in this paper. The effect of metal modification on the activity and stability of the copper catalyst supported on γ‐Al2O3 and La2O3 (Cu/γ‐Al2O3‐La2O3) was clarified and a Cr modified Cu/Al2O3‐La2O3 (Cu‐Cr/γ‐Al2O3‐La2O3) showed the best catalytic performance. The conversion of n‐pentanol was 70.0% and the selectivity for n‐pentanal increased to 97.1% over Cu‐Cr/γ‐Al2O3‐La2O3. X‐ray diffraction and temperature programmed reduction of H2 indicated that the addition of Cr favors the formation and reduction of the copper oxide, and the dispersion of the active Cu0 species, accounting for the good activity and stability of this catalyst. Furthermore, the lower amount of acidic sites in Cu‐Cr/γ‐Al2O3‐La2O3 is suggested to suppress the dehydration in oxidant‐free dehydrogenation of n‐pentanol, accounting for the higher selectivity for n‐pentanal.  相似文献   

9.
Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.  相似文献   

10.
Using cheap n‐butylamine as template, ZSM‐5 zeolites have been successfully synthesized and coated on monolithic interconnected macroporous Al2O3 by the secondary growth method. The use of cheap n‐butylamine could significantly reduce the synthesis cost. Hierarchical monolithic ZSM‐5 zeolites were prepared from synthetic mixtures with different H2O/Na2O or SiO2/Al2O3 ratio. The synthesized samples were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR) and N2 adsorption‐desorption. The results show that the hierarchical monolithic zeolites were obtained with cheap n‐butylamine template as template. During the hydrothermal reaction process, the morphology of the micrometer‐sized support was well maintained. The irregular crystals were formed in a wide range of the H2O/Na2O or SiO2/Al2O3 ratio of synthetic mixtures and coated on monolithic Al2O3. The relative crystallinity of the zeolites was highest at H2O/Na2O=250 or SiO2/Al2O3=160. This type of composites exhibited hierarchical porous structures and relatively high specific surface areas.  相似文献   

11.
A series of metal‐Al2O3 catalysts were prepared simply by the conventional impregnation with Al2O3 and metal chlorides, which were applied to the dehydration of fructose to 5‐hydroxymethylfurfural (HMF). An agreeable HMF yield of 93.1% was achieved from fructose at mild conditions (100°C and 40 min) when employing Cr(III)‐Al2O3 as catalyst in 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl). The Cr(III)‐Al2O3 catalyst was characterized via XRD, DRS and Raman spectra and the results clarified the interaction between the Cr(III) and the alumina support. Meanwhile, the reaction solvents ([Bmim]Cl) collected after 1st reaction run and 5th reaction run were analyzed by ICP‐OES and LC‐ITMS and the results confirmed that no Cr(III) ion was dropped off from the alumina support during the fructose dehydration. Notably, Cr(III)‐Al2O3 catalyst had an excellent catalytic performance for glucose and sucrose and the HMF yields were reached to 73.7% and 84.1% at 120°C for 60 min, respectively. Furthermore, the system of Cr(III)‐Al2O3 and [Bmim]Cl exhibited a constant stability and activity at 100°C for 40 min and a favorable HMF yield was maintained after ten recycles.  相似文献   

12.
We demonstrate the conformal coating of an ultrathin Al2O3 layer on TiO2 nanoparticles through atomic layer deposition by using a specifically designed rotary reactor to eliminate the phototoxicity of the particles for cosmetic use. The ALD reactor is modified to improve the coating efficiency as well as the agitation of the particles for conformal coating. Elemental and microstructural analyses show that ultrathin Al2O3 layers are conformally deposited on the TiO2 nanoparticles with a controlled thickness. Rhodamine B dye molecules on Al2O3‐coated TiO2 exhibited a long life time under UV irradiation, that is, more than 2 h, compared to that on bare TiO2, that is, 8 min, indicating mitigation of photocatalytic activity by the coated layer. The effect of carbon impurities in the film resulting from various deposition temperatures and thicknesses of the Al2O3 layer on the photocatalytic activity are also thoroughly investigated with controlled experimental condition by using dye molecules on the surface. Our results reveal that an increased carbon impurity resulting from a low processing temperature provides a charge conduction path and generates reactive oxygen species causing the degradation of dye molecule. A thin coated layer, that is, less than 3 nm, also induced the tunneling of electrons and holes to the surface, hence oxidizing dye molecules. Furthermore, the introduction of an Al2O3 layer on TiO2 improves the light trapping thus, enhances the UV absorption.  相似文献   

13.
Oxidative dehydrogenation of ethane (ODE) is limited by the facile deep oxidation and potential safety hazards. Now, electrochemical ODE reaction is incorporated into the anode of a solid oxide electrolysis cell, utilizing the oxygen species generated at anode to catalytically convert ethane. By infiltrating γ‐Al2O3 onto the surface of La0.6Sr0.4Co0.2Fe0.8O3‐δ‐Sm0.2Ce0.8O2‐δ (LSCF‐SDC) anode, the ethylene selectivity reaches as high as 92.5 %, while the highest ethane conversion is up to 29.1 % at 600 °C with optimized current and ethane flow rate. Density functional theory calculations and in situ X‐ray photoelectron spectroscopy characterizations reveal that the Al2O3/LSCF interfaces effectively reduce the amount of adsorbed oxygen species, leading to improved ethylene selectivity and stability, and that the formation of Al‐O‐Fe alters the electronic structure of interfacial Fe center with increased density of state around Fermi level and downshift of the empty band, which enhances ethane adsorption and conversion.  相似文献   

14.
Vapor‐phase aldol condensation of n‐butyraldehyde to 2‐ethyl‐2‐hexenal was studied at 1 atm and 150~ 300°C in a fixed‐bed, integral‐flow reactor by using NaX, KX, γ‐Al2O3 and Na/NaOH/γ‐Al2CO3 catalysts. Ion exchange of NaX zeolite with potassium acetate solution results in a decrease of crystallinity and apparent lowering of surface area, whereas the basic strength is enhanced. Treatment of γ‐Al2O3 with NaOH and Na causes a large decrease of the surface area but strong enhancement of the catalyst basicity. The catalytic activity on the basis of unit surface area is in the order Na/NaOH/γ‐Al2O3 < KXU < KXW < NaX >γ‐Al2O3, in accordance with the relative catalyst basic strength. The molar ratio of trimeric to dimeric products increases with increasing the reaction temperature and the catalyst basic strength except for Na/NaOH/γ‐Al2O3. Very high selectivity of 2‐ethyl‐2‐hexenal (>98.5%) was observed for reactions over NaX zeolite at 150°C. Based on the FT‐IR and the catalytic results, the reaction paths are proposed as follows: self‐aldol condensation of n‐butyraldehyde, followed by dehydration produces 2‐ethyl‐2‐hexenal, which then reacts with n‐butyraldehyde and successively dehydrates to 2,4‐diethyl‐2,4‐octadienal and 1,3,5‐triethylbenzene. For the reaction over NaX, the calculated Arrhenius frequency factor and activation energy are 314 mol/g·h and 32.6 kJ/mol, respectively.  相似文献   

15.
The organosilicon reagent 1,4‐bis‐(trimethylsilyl)‐1,4‐diaza‐2,5‐cyclohexadiene 2 plays the binary role of the simultaneous reduction of GeCl2.dioxane 1 dissolved in oleylamine to Ge nanocrystals and the formation of graphitic sheets under hot‐injection conditions. This colloidal synthetic route to germanium nanocrystals embedded on N‐doped graphitic nanosheets Ge/NG is free of any template or catalyst and involves easy purification techniques. The Ge/NG/C obtained after carbonization has been explored for anode performance in lithium‐ion batteries. Both Ge/NG and Ge/NG/C can be obtained on a gram scale and are bottleable under argon for months.  相似文献   

16.
Polydopamine‐coated Fe3O4 magnetic nanoparticles synthesized through a facile solvothermal reaction and the self‐polymerization of dopamine have been employed as a magnetic solid‐phase extraction sorbent to enrich four phenolic compounds, bisphenol A, tetrabromobisphenol A, (S)‐1,1′‐bi‐2‐naphthol and 2,4,6‐tribromophenol, from environmental waters followed by high‐performance liquid chromatographic detection. Various parameters of the extraction were optimized, including the pH of the sample matrix, the amount of polydopamine‐coated Fe3O4 sorbent, the adsorption time, the enrichment factor of analytes, the elution solvent, and the reusability of the nanoparticles sorbent. The recoveries of these phenols in spiked water samples were 62.0–112.0% with relative standard deviations of 0.8–7.7%, indicating the good reliability of the magnetic solid‐phase extraction with high‐performance liquid chromatography method. In addition, the extraction characteristics of the magnetic polydopamine‐coated Fe3O4 nanoparticles were elucidated comprehensively. It is found that there are hydrophobic, π–π stacking and hydrogen bonding interactions between phenols and more dispersible polydopamine‐coated Fe3O4 in water, among which hydrophobic interaction dominates the magnetic solid‐phase extraction performance.  相似文献   

17.
A composite of highly dispersed Fe3O4 nanoparticles (NPs) anchored in three‐dimensional hierarchical porous carbon networks (Fe3O4/3DHPC) as an anode material for lithium‐ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2)‐expanded ethanol solution. The as‐synthesized Fe3O4/3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3O4 NPs was closely coated. As an anode material for LIBs, the Fe3O4/3DHPC composite with 79 wt % Fe3O4 (Fe3O4/3DHPC‐79) delivered a high reversible capacity of 1462 mA h g?1 after 100 cycles at a current density of 100 mA g?1, and maintained good high‐rate performance (728, 507, and 239 mA h g?1 at 1, 2, and 5 C, respectively). Moreover, it showed excellent long‐term cycling performance at high current densities, 1 and 2 A g?1. The enhanced lithium‐storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon‐based transition‐metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.  相似文献   

18.
Silver molybdate, Ag2Mo2O7, has been prepared by a conventional solid‐state reaction. Its electrochemical properties as an anode material for sodium‐ion batteries (SIBs) have been comprehensively examined by means of galvanostatic charge–discharge cycling, cyclic voltammetry, and rate performance measurements. At operating voltages between 3.0 and 0.01 V, the electrode delivered a reversible capacity of nearly 190 mA h g?1 at a current density of 20 mA g?1 after 70 cycles. Ag2Mo2O7 also demonstrated a good rate capability and long‐term cycle stability, the capacity reaching almost 100 mA h g?1 at a current density of 500 mA g?1, with a capacity retention of 55 % over 1000 cycles. Moreover, the sodium storage process of Ag2Mo2O7 has been investigated by means of ex situ XRD, Raman spectroscopy, and HRTEM. Interestingly, the anode decomposes into Ag metal and Na2MoO4 during the initial discharge process, and then Na+ ions are considered to be inserted into/extracted from the Na2MoO4 lattice in the subsequent cycles governed by an intercalation/deintercalation mechanism. Ex situ HRTEM images revealed that Ag metal not only remains unchanged during the sodiation/desodiation processes, but is well dispersed throughout the amorphous matrix, thereby greatly improving the electronic conductivity of the working electrode. The “in situ” decomposition behavior of Ag2Mo2O7 is distinct from that of chemically synthesized, metal‐nanoparticle‐coated electrode materials, and provides strong supplementary insight into the mechanism of such new anode materials for SIBs and may set a precedent for the design of further materials.  相似文献   

19.
In order to enhance dielectric properties and energy storage density of poly(vinylidene fluoride‐hexafluoro propylene) (PVDF‐HFP), surface charged gas‐phase Al2O3 nanoparticles (GP‐Al2O3, with positive surface charges, ε’ ≈ 10) are selected as fillers to fabricate PVDF‐HFP‐based composites via simple physical blending and hot‐molding techniques. The results show that GP‐Al2O3 are dispersed homogeneously in the PVDF‐HFP matrix and the existence of nanoscale interface layer (matrix‐filler) is investigated by SAXS. The dielectric constant of the composites filled with 10 wt % GP‐Al2O3 is 100.5 at 1 Hz, which is 5.6 times higher than that of pure PVDF‐HFP. The maximum energy storage density of the composite is 4.06 J cm?3 at an electrical field of 900 kV mm?1 with GP‐Al2O3 content of 1 wt %. Experimental results show that GP‐Al2O3 could induce uniform fillers’ distribution and increase the concentration of electroactive β‐phase as well as enhance interfacial polarization in the matrix, which resulted in enhancements of dielectric constant and energy storage density of the PVDF‐HFP composites. This work demonstrates that surface charged inorganic‐oxide nanoparticles exhibit promising potential in fabricating ferroelectric polymer composites with relatively high dielectric constant and energy storage. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 574–583  相似文献   

20.
A simple, cost‐effective, and easily scalable molten salt method for the preparation of Li2GeO3 as a new type of high‐performance anode for lithium‐ion batteries is reported. The Li2GeO3 exhibits a unique porous architecture consisting of micrometer‐sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g?1 after 300 cycles at 50 mA g?1. The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g?1 (94 % retention) after 35 cycles of ascending steps of current in the range of 25–800 mA g?1 and finally back to 25 mA g?1. This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon‐coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号