首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
For solving the large sparse linear complementarity problems, we establish modified modulus‐based matrix splitting iteration methods and present the convergence analysis when the system matrices are H+‐matrices. The optima of parameters involved under some scopes are also analyzed. Numerical results show that in computing efficiency, our new methods are superior to classical modulus‐based matrix splitting iteration methods under suitable conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We incorporate our recent preconditioning techniques into the classical inverse power (Rayleigh quotient) iteration for computing matrix eigenvectors. Every loop of this iteration essentially amounts to solving an ill conditioned linear system of equations. Due to our modification we solve a well conditioned linear system instead. We prove that this modification preserves local quadratic convergence, show experimentally that fast global convergence is preserved as well, and yield similar results for higher order inverse iteration, covering the cases of multiple and clustered eigenvalues.  相似文献   

3.
For the large sparse linear complementarity problems, by reformulating them as implicit fixed‐point equations based on splittings of the system matrices, we establish a class of modulus‐based matrix splitting iteration methods and prove their convergence when the system matrices are positive‐definite matrices and H+‐matrices. These results naturally present convergence conditions for the symmetric positive‐definite matrices and the M‐matrices. Numerical results show that the modulus‐based relaxation methods are superior to the projected relaxation methods as well as the modified modulus method in computing efficiency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Inverse iteration is simple but not very efficient method for computing few eigenvalues with minimal absolute values and corresponding eigenvectors of a symmetric matrix. The idea is to increase its efficiency by technique similar to multigrid methods used for solving linear systems. This approach is not new, but until now multigrid was mostly used for solving linear system which appear in Rayleigh quotient iteration, inverse iteration and related iterative methods. Instead of choosing appropriate coordinates (grids), our algorithm performs inverse iteration on a sequence of subspaces with decreasing dimensions (multispace). Block Lanczos method is used for the selection of a smaller subspace. This will produce a banded matrix, which makes inverse iteration even faster in the smaller dimensions.   相似文献   

5.
Based on separable property of the linear and the nonlinear terms and on the Hermitian and skew-Hermitian splitting of the coefficient matrix, we present the Picard-HSS and the nonlinear HSS-like iteration methods for solving a class of large scale systems of weakly nonlinear equations. The advantage of these methods over the Newton and the Newton-HSS iteration methods is that they do not require explicit construction and accurate computation of the Jacobian matrix, and only need to solve linear sub-systems of constant coefficient matrices. Hence, computational workloads and computer memory may be saved in actual implementations. Under suitable conditions, we establish local convergence theorems for both Picard-HSS and nonlinear HSS-like iteration methods. Numerical implementations show that both Picard-HSS and nonlinear HSS-like iteration methods are feasible, effective, and robust nonlinear solvers for this class of large scale systems of weakly nonlinear equations.  相似文献   

6.
Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.  相似文献   

7.
Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.  相似文献   

8.
The finite difference discretization of the spatial fractional diffusion equations gives discretized linear systems whose coefficient matrices have a diagonal‐plus‐Toeplitz structure. For solving these diagonal‐plus‐Toeplitz linear systems, we construct a class of diagonal and Toeplitz splitting iteration methods and establish its unconditional convergence theory. In particular, we derive a sharp upper bound about its asymptotic convergence rate and deduct the optimal value of its iteration parameter. The diagonal and Toeplitz splitting iteration method naturally leads to a diagonal and circulant splitting preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1, especially when the discretization step‐size h is small. Numerical results exhibit that the diagonal and circulant splitting preconditioner can significantly improve the convergence properties of GMRES and BiCGSTAB, and these preconditioned Krylov subspace iteration methods outperform the conjugate gradient method preconditioned by the approximate inverse circulant‐plus‐diagonal preconditioner proposed recently by Ng and Pan (M.K. Ng and J.‐Y. Pan, SIAM J. Sci. Comput. 2010;32:1442‐1464). Moreover, unlike this preconditioned conjugate gradient method, the preconditioned GMRES and BiCGSTAB methods show h‐independent convergence behavior even for the spatial fractional diffusion equations of discontinuous or big‐jump coefficients.  相似文献   

9.
Bai has recently presented a modulus-based matrix splitting iteration method, which is a powerful alternative for solving the large sparse linear complementarity problems. In this paper, we further present a two-step modulus-based matrix splitting iteration method, which consists of a forward and a backward sweep. Its convergence theory is proved when the system matrix is an H  + -matrix. Moreover, for the two-step modulus-based relaxation iteration methods, more exact convergence domains are obtained without restriction on the Jacobi matrix associated with the system matrix, which improve the existing convergence theory. Numerical results show that the two-step modulus-based relaxation iteration methods are superior to the modulus-based relaxation iteration methods for solving the large sparse linear complementarity problems.  相似文献   

10.
《Optimization》2012,61(8):965-979
We extend the smoothing function proposed by Huang, Han and Chen [Journal of Optimization Theory and Applications, 117 (2003), pp. 39–68] for the non-linear complementarity problems to the second-order cone programming (SOCP). Based on this smoothing function, a non-interior continuation method is presented for solving the SOCP. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that our algorithm is globally and locally superlinearly convergent in absence of strict complementarity at the optimal solution. Numerical results indicate the effectiveness of the algorithm.  相似文献   

11.
Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns.  相似文献   

12.
The circular cone programming (CCP) problem is to minimize or maximize a linear function over the intersection of an affine space with the Cartesian product of circular cones. In this paper, we study nondegeneracy and strict complementarity for the CCP, and present a nonmonotone smoothing Newton method for solving the CCP. We reformulate the CCP as a second-order cone programming (SOCP) problem using the algebraic relation between the circular cone and the second-order cone. Then based on a one parametric class of smoothing functions for the SOCP, a smoothing Newton method is developed for the CCP by adopting a new nonmonotone line search scheme. Without restrictions regarding its starting point, our algorithm solves one linear system of equations approximately and performs one line search at each iteration. Under mild assumptions, our algorithm is shown to possess global and local quadratic convergence properties. Some preliminary numerical results illustrate that our nonmonotone smoothing Newton method is promising for solving the CCP.  相似文献   

13.
The work presents an adaptation of iteration method for solving a class of thirst order partial nonlinear differential equation with mixed derivatives.The class of partial differential equations present here is not solvable with neither the method of Green function, the most usual iteration methods for instance variational iteration method, homotopy perturbation method and Adomian decomposition method, nor integral transform for instance Laplace,Sumudu, Fourier and Mellin transform. We presented the stability and convergence of the used method for solving this class of nonlinear chaotic equations.Using the proposed method, we obtained exact solutions to this kind of equations.  相似文献   

14.
基于凝聚函数,提出一个求解垂直线性互补问题的光滑Newton法.该算法具有以下优点:(i)每次迭代仅需解一个线性系统和实施一次线性搜索;(ⅱ)算法对垂直分块P0矩阵的线性互补问题有定义且迭代序列的每个聚点都是它的解.而且,对垂直分块P0+R0矩阵的线性互补问题,算法产生的迭代序列有界且其任一聚点都是它的解;(ⅲ)在无严格互补条件下证得算法即具有全局线性收敛性又具有局部二次收敛性.许多已存在的求解此问题的光滑Newton法都不具有性质(ⅲ).  相似文献   

15.
In this paper, we apply the Anderson acceleration technique to the existing relaxation fixed-point iteration for solving the multilinear PageRank. In order to reduce computational cost, we further consider the periodical version of the Anderson acceleration. The convergence of the proposed algorithms is discussed. Numerical experiments on synthetic and real-world datasets are performed to demonstrate the advantages of the proposed algorithms over the relaxation fixed-point iteration and the extrapolated shifted fixed-point method. In particular, we give a strategy for choosing the quasi-optimal parameters of the associated algorithms when they are applied to solve the test problems with different sizes but the same structure.  相似文献   

16.
本文研究了二阶锥线性互补问题的低阶罚函数算法.利用低阶罚函数算法将二阶锥线性互补问题转化为低阶罚函数方程组,获得了低阶罚函数方程组的解序列在特定条件下以指数速度收敛于二阶锥线性互补问题解的结果,推广了二阶锥线性互补问题的幂罚函数算法.数值实验结果验证了算法的有效性.  相似文献   

17.
Abstract

In this paper, the convergence conditions of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems of H-matrices are weakened. The convergence domain given by the proposed theorems is larger than the existing ones.  相似文献   

18.
Zheng  Hua  Vong  Seakweng 《Numerical Algorithms》2019,82(2):573-592

In this paper, a modified modulus-based matrix splitting iteration method is established for solving a class of implicit complementarity problems. The global convergence conditions are given when the system matrix is a positive definite matrix or an H+-matrix, respectively. In addition, some numerical examples show that the proposed method is efficient.

  相似文献   

19.
通过将二阶锥线性互补问题转化为等价的不动点方程,介绍了一种广义模系矩阵分裂迭代算法,并研究了该算法的收敛性.进一步,数值结果表明广义模系矩阵分裂迭代算法能够有效地求解二阶锥线性互补问题.  相似文献   

20.
In this paper, we present a new one‐step smoothing Newton method for solving the second‐order cone complementarity problem (SOCCP). Based on a new smoothing function, the SOCCP is approximated by a family of parameterized smooth equations. At each iteration, the proposed algorithm only need to solve one system of linear equations and perform only one Armijo‐type line search. The algorithm is proved to be convergent globally and superlinearly without requiring strict complementarity at the SOCCP solution. Moreover, the algorithm has locally quadratic convergence under mild conditions. Numerical experiments demonstrate the feasibility and efficiency of the new algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号