首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the determination of GDC‐0425 concentrations in human plasma has been developed and validated. Supported liquid extraction was used to extract plasma samples (50 μL) and the resulting samples were analyzed using reverse‐phase chromatography and mass spectrometry coupled with a turbo‐ionspray interface. The mass analysis of GDC‐0425 was performed using multiple reaction monitoring transitions in positive ionization mode. The method was validated over the calibration curve range of 1.00–1000 ng/mL using linear regression and 1/x2 weighting. Within‐run relative standard deviation ranged from 0.8 to 5.1%, while between‐run RSD varied from 1.9 to 4.7% for QCs. The accuracy ranged from 90.0 to 101.0% of nominal for within‐run and from 94.0 to 100.0% of nominal for between‐run. Overall extraction recovery was 87.4% for GDC‐0425 and 87.9% for GDC‐0425‐d9. Stability of GDC‐0425 was established in human plasma for 374 days at ?20 and ?70 °C and established in reconstituted sample extracts for 88 h when stored at 2–8 °C. Stable‐labeled internal standard was used to minimize matrix effects. This assay was used to characterize the pharmacokinetics of GDC‐0425 in cancer patients.  相似文献   

2.
Determination of amino acids in biofluids is a challenging task because of difficulties deriving from their high polarity and matrix interference. A simple, reliable and high‐throughput hydrophilic interaction UHPLC–MS/MS method was developed and validated for the rapid simultaneous determination of 19 free amino acids in rat plasma and urine samples in this paper. Hydrophilic method with a Waters Acquity UPLC BEH Amide column (100 × 2.1 mm,1.7 μm) was used with a gradient mobile phase system of acetonitrile and water both containing 0.2% formic acid. The analysis was performed on a positive electrospray ionization mass spectrometer via multiple reaction monitoring. Samples of 10 μL plasma and 50 μL urine were spiked with three deuterated internal standards, pretreated with 250 μL acetonitrile for one‐step protein precipitation and a final dilution of urine samples. Good linearities (r > 0.99) were obtained for all of the analytes with the lower limit of quantification from 0.1 to 1.2 μg/mL. The relative standard deviation of the intra‐day and inter‐day precisions were within 15.0% and the accuracy ranged from ?12.8 to 12.7%. The hydrophilic interaction UHPLC–MS/MS method was rapid, accurate and high‐throughput and exhibited better chromatography behaviors than the regular RPLC methods. It was further successfully applied to detect 19 free amino acids in biological matrix.  相似文献   

3.
A liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0152 in human plasma to support clinical development. The method consisted of a solid‐phase extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d7‐GDC‐0152 was used as the internal standard. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 0.02–10.0 ng/mL for GDC‐0152. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 99.3% with a precision (%CV) of 13.9%. For quality control samples at 0.0600, 2.00 and 8.00 ng/mL, the between‐run %CV was ≤8.64. Between‐run percentage accuracy ranged from 98.2 to 99.6%. GDC‐0152 was stable in human plasma for 363 days at ?20°C and for 659 days at ?70°C storage. GDC‐0152 was stable in human plasma at room temperature for up to 25 h and through three freeze–thaw cycles. In whole blood, GDC‐0152 was stable for 12 h at 4°C and at ambient temperature. This validated LC‐MS/MS method for determination of GDC‐0152 was used to support clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS‐MS) method for quantification of a newly developed anticancer agent NPD‐103 has been established. An aliquot of human plasma sample (200 µL) was spiked with 13C‐labeled paclitaxel (internal standard) and extracted with 1.3 mL of tert‐butyl methyl ether. NPD‐103 was quantitated on a C18 column with methanol–0.1% formic acid (75:25, v/v) as mobile phase using UPLC‐MS‐MS operating in positive electrospray ionization mode with a total run time of 3.0 min. For NPD‐103 at the concentrations of 1.0, 5.0 and 10.0 µg/mL in human plasma, the absolute extraction recoveries were 95.58, 102.43 and 97.77%, respectively. The linear quantification range of the method was 0.1–20.0 µg/mL in human plasma with linear correlation coefficients greater than 0.999. The intra‐ and inter‐day accuracy for NPD‐103 at 1.0, 5.0 and 10.0 µg/mL levels in human plasma fell into the ranges of 95.29–100.00% and 91.04–94.21%, and the intra‐ and inter‐day precisions were in the ranges of 8.96–11.79% and 7.25–10.63%, respectively. This assay is applied to determination of half‐life of NPD‐103 in human plasma. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In the present study a fast, sensitive and robust validated method to quantify chlorpheniramine in human plasma using brompheniramine as internal standard (IS) is described. The analyte and the IS were extracted from plasma by LLE (diethyl ether–dichloromethane, 80:20, v/v) and analyzed by HPLC‐ESI‐MS/MS. Chromatographic separation was performed using a gradient of methanol from 35 to 90% with 2.5 mm NH4OH on a Gemini Phenomenex C8 5 μm column (50 × 4.6 mm i.d.) in 5.0 min/run. The method fitted to a linear calibration curve (0.05–10 ng/mL, R > 0.9991). The precision (%CV) and accuracy ranged, respectively: intra‐batch from 1.5 to 6.8% and 99.1 to 106.6%, and inter‐batch from 2.4 to 9.0%, and 99.9 to 103.1%. The validated bioanalytical procedure was used to assess the comparative bioavailability in healthy volunteers of two dexchlorpheniramine 2.0 mg tablet formulations (test dexchlorpheniramine, Eurofarma, and reference Celestamine®, Schering‐Plough). The study was conducted using an open, randomized, two‐period crossover design with a 2 week washout interval. Since the 90% confidence interval for Cmax and AUC ratios were all within the 80–125% interval proposed by ANVISA and FDA, it was concluded that test and reference formulations are bioequivalent concerning the rate and the extent of absorption. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, fast and reliable high‐performance liquid chromatography–triple quadrupole mass spectrometry method (HPLC‐MS/MS method) was developed, validated and used for the simultaneous quantification of irinotecan and 7‐ethyl‐10‐hydroxycamptothecin (SN38) in heparinized mouse plasma. Camptothecin was used as the internal standard. A single‐step protein precipitation without evaporation and reconstitution steps was adopted as sample processing method. Our bioanalytical method was validated in compliance with the guidelines from the European Medicines Agency. The lower limit of quantification for both irinotecan and SN38 was 5 ng/mL. The calibration curves for both analytes fitted to a 1/x2 weighted linear regression model and ranged from 5 to 1000 ng/mL. The intra‐run and inter‐run precisions were within 8.6%, and the intra‐run and inter‐run accuracies were within 96.4?103.9%. Our validated bioanalytical method was successfully applied to the pharmacokinetic study in mice, in which 4 mg/kg irinotecan was intraperitoneally injected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A sensitive and specific method based on liquid chromatography‐tandem mass spectrometry using electrospray ionization (LC‐ESI‐MS/MS) has been developed for the determination of Schisandrin and Schisandrin B in rat plasma. A 100 μL plasma sample was extracted by methyl tert‐butyl ether after spiking the samples with nimodipine (internal standard) and performed on an XTerra®MS‐C18 column (150 mm × 2.1 mm, 3.5 μm) with the mobile phase of acetonitrile–water–formic acid (80:20:0.2, v/v) at a flow rate of 0.2 mL/min in a run time of 8.5 min. The lower limit of quantification of the method was 40 ng/mL for Schisandrin and 20 ng/mL for Schisandrin B. The method showed reproducibility with intra‐day and inter‐day precision of less than 13.8% RSD, as well as accuracy, with inter‐ and intra‐assay accuracies between 93.5 and 107.2%. Finally, the LC‐ESI‐MS/MS method was successfully applied to study the pharmacokinetics of Schisandrin and Schisandrin B in rats after administration of Wurenchun commercial formulations to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, a reliable ultra‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method coupled with an easy, fast and effective sample pretreatment procedure was developed for simultaneous determination of amitraz, chlordimeform, formetanate and their metabolites in human blood. With the procedures of protein precipitation and a phospholipid‐removal step, the endogenous compound interference was significantly reduced, and matrix effects were significantly reduced. The linear ranges of matrix‐matched standard curves were from 0.5 to 1000 ng/mL with coefficients of determination >0.996. Very low limits of detection (0.05–0.12 ng/mL) and limits of quantitation (0.15–0.4 ng/mL) were achieved. Reasonable recoveries ranging from 88.1 to 103.5% were obtained. The intra‐day RSDs ranging from 3.2 to 8.6% and inter‐day RSDs ranging from 4.8 to 9.2% indicated good precision. With the introduction of a phospholipid‐removal step, the ME ranged from 90.1 to 98.5%. The established method was successfully applied to the analysis of a blood sample from a formetanate poisoning case. This method possesses the advantages of high sensitivity, reduced matrix effects and rapidity.  相似文献   

10.
A simple, selective and rapid HPLC‐MS/MS method was developed and validated for the determination of caderofloxacin in human plasma. Sparfloxacin was used as the internal standard (IS). After precipitation with methanol and dilution with the mobile phase, the samples were injected into the HPLC‐MS/MS system. The chromatographic separation was performed on a Zorbax XDB Eclipse C18 column (150 × 4.6 mm, 5 µm) with a mobile phase of ammonium acetate buffer (20 mm, pH 3.0)–methanol, 45:55 (v/v). The MS/MS analysis was done in positive mode. The multiple reaction monitoring transitions monitored were m/z 412.3 → 297.1 for caderofloxacin and m/z 393.2 → 292.2 for the IS. The calibration curve was linear over the range of 50.0–8000 ng/mL with an aliquot of 100 μL plasma. The precision of the assay was 2.0–9.4 and 6.6–11.5% for the intra‐ and inter‐run variability, respectively. The intra‐ and inter‐run accuracy (relative error) was 4.4–10.0 and ?1.2–4.0%. The total run time was 3.5 min. The assay was fully validated in accordance with the US Food and Drug Administration guidance. It was successfully applied to a pharmacokinetic study of caderofloxacin in healthy Chinese volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
An LC–MS/MS‐based bioanalytical method has been developed to measure the concentration of L‐threonate at its endogenous level in human plasma. Following isotope dilution and protein precipitation, the samples were acetylated and chromatographed under reversed‐phase conditions for baseline separation of the derivatized L‐threonate and its stereoisomer D‐erythronate. The method was assessed by a fit‐for‐purpose validation with a calibration range from 100 to 10,000 ng/mL. The intra‐run coefficients of variation (CVs) were <3.6% and the inter‐run CV was 3.2% for the QC samples at endogenous level. At the lower limit of quantitation, the intra‐run CV was 6.1% and the average inaccuracy was ?1.4%. This method provides an efficient and reliable quantitation of L‐threonate and could be useful to certain biomarker investigators.  相似文献   

12.
A highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of nortriptyline (NTP) and 10‐hydroxynortriptyline (OH‐NTP) in human plasma (250 µL) using carbamazepine as an internal standard (IS). LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract NTP, OH‐NTP and IS from human plasma. The total run time was 2.5 min and the elution of NTP, OH‐NTP and IS occurred at 1.44, 1.28 and 1.39 min, respectively; this was achieved with a mobile phase consisting of 20 mm ammonium acetate : acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a HyPURITY C18 column. The developed method was validated in human plasma with a lower limit of quantitation of 1.09 ng/mL for both NTP and OH‐NTP. A linear response function was established for the range of concentrations 1.09–30.0 ng/mL (r > 0.998) for both NTP and OH‐NTP. The intra‐ and inter‐day precision values for NTP and OH‐NTP met the acceptance as per FDA guidelines. NTP and OH‐NTP were stable in a battery of stability studies, i.e. bench‐top, auto‐sampler and freeze–thaw cycles. The developed assay was applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A specific and sensitive gas chromatography–mass spectrometry (GC‐MS) with quadrupole mass analyzer type was developed and validated for the quantitative analysis of mequitazine in human plasma. After liquid–liquid extraction of plasma samples containing mequitazine and promethazine (internal standard, IS) using hexane with pH adjustment, the extract was evaporated and an aliquot of reconstituted residue was injected into the GC‐MS system. The assay showed linearity over a concentration range from 1 to 50 ng/mL. Intra‐ and inter‐day precision for mequitazine was <9.09 and 9.29%, respectively, and intra‐ and inter‐day accuracy ranged from ?7.97 to 9.05% and from ?1.51 to 7.89%, respectively. The lower limit of quantification was 1 ng/mL in the present assay. The developed analytical method was successfully applied to a pharmacokinetic study after a single oral administration of mequitazine in human subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A highly sensitive and selective method based on ultra‐high‐performance liquid chromatography combined with linear ion trap–Orbitrap tandem mass spectrometry (UHPLC–LTQ–Orbitrap–MS) has been developed and validated for the determination of scopoletin in dog plasma. The analyte was extracted from plasma samples using acetonitrile and separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm) with 0.05% ammonium hydroxide and acetonitrile as mobile phase. The developed method was linear over the concentration range of 1–500 ng/mL, with a correlation coefficient >0.9988. The intra‐ and inter‐day precisions (RSD) were <8.93% while the accuracy (RE) ranged from ?6.50 to 8.12%. Extraction recovery, matrix effect and stability for dog plasma samples were within the required limits. The validated method has been successfully applied to investigate the pharmacokinetics and metabolism of scopoletin in dog plasma after intravenous (1 mg/kg) and oral (10, 25, 50 mg/kg) administration. The results revealed that (a) scopoletin showed short elimination half‐life in dog; (b) its oral bioavailability was low (within the range of 5.69–7.08%); (c) scopoletin showed dose‐independent pharmacokinetic profiles in dog plasma over the dose range of 10–50 mg/kg; and (d) glucuronidation was the predominant metabolic pathway in dog.  相似文献   

15.
A high‐throughput LC–MS/MS bioanalytical method was developed and validated for the determination of hydrocortisone in mouse serum via supported liquid extraction (SLE) in a 96‐well plate format. Although sample extracts from SLE result in similar matrix effects compared with conventional liquid–liquid extraction (LLE), greater analyte extraction recovery and much higher analysis throughput for the quantitative analysis of hydrocortisone in mouse serum were obtained. The current LC‐MS/MS method was validated for a concentration range of 2.00–2000 ng/mL for hydrocortisone using a 0.100 mL volume of mouse serum. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentration levels showed ≤12.9% CV and ?3.4–6.2% bias for the analyte in mouse serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Quantitation of Zn‐DTPA (zinc diethylenetriamene pentaacetate, a metal chelate) in complex biological matrix is extremely challenging on account of its special physiochemical properties. This study aimed to develop a robust and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of Zn‐DTPA in human plasma and urine. The purified samples were separated on Proteonavi (250 × 4.6 mm, 5 μm; Shiseido, Ginza, Tokyo, Japan) and a C18 guard column. The mobile phase consisted of methanol–2 mm ammonium formate (pH 6.3)–ammonia solution (50:50:0.015, v/v/v), flow rate 0.45 mL/min. The linear concentration ranges of the calibration curves for Zn‐DTPA were 1–100 μg/mL in plasma and 10–2000 μg/mL in urine. The intra‐ and inter‐day precisions for quality control (QC) samples were from 1.8 to 14.6% for Zn‐DTPA and the accuracies for QC samples were from −4.8 to 8.2%. This method was fully validated and successfully applied to the quantitation of Zn‐DTPA in plasma and urine samples of a healthy male volunteer after intravenous infusion administration of Zn‐DTPA. The result showed that the concentration of Zn‐DTPA in urine was about 20 times that in plasma, and Zn‐DTPA was completely (94.7%) excreted through urine in human.  相似文献   

17.
Topotecan (TPT) is an important anti‐cancer drug that inhibits topoisomerase I. A sensitive and robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method that potentially determines TPT in beagle dog plasma is needed for a bioequivalence study of TPT formulations. We developed and validated LC‐MS/MS to evaluate TPT in beagle dog plasma in terms of specificity, linearity, precision, accuracy, stability, extraction recovery and matrix effect. Plasma samples were treated with an OstroTM sorbent plate (a robust and effective tool) to eliminate phospholipids and proteins before analysis. TPT and camptothecin (internal standard) were separated on an Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 50 mm) with 0.1% formic acid and methanol as the mobile phase at a flow rate of 0.25 mL/min. TPT was analyzed using positive ion electrospray ionization in multiple‐reaction monitoring mode. The obtained lower limit of quantitation was 1 ng/mL (signal‐to‐noise ratio > 10). The standard calibration curve for TPT was linear (correlation coefficient > 0.99) at the concentration range of 1–400 ng/mL. The intra‐day and inter‐day precision, accuracy, stability, extraction recovery and matrix effect of TPT were within the acceptable limits. The validated method was successfully applied in a bioequivalence study of TPT in healthy beagle dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

19.
A liquid chromatographic–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0834 and its amide hydrolysis metabolite (M1) in human plasma to support clinical development. The method consisted of semi‐automated 96‐well protein precipitation extraction for sample preparation and LC‐MS/MS analysis in positive ion mode using TurboIonSpray® for analysis. D6‐GDC‐0834 and D6‐M1 metabolite were used as internal standards. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 1 – 500 ng/mL for both GDC‐0834 and M1 metabolite. The accuracy (percentage bias) at the lower limit of quantitation (LLOQ) was 5.20 and 0.100% for GDC‐0834 and M1 metabolite, respectively. The precision (CV) for samples at the LLOQ was 3.13–8.84 and 5.20–8.93% for GDC‐0834 and M1 metabolite, respectively. For quality control samples at 3, 200 and 400 ng/mL, the between‐run CV was ≤7.38% for GDC‐0834 and ≤8.20% for M1 metabolite. Between run percentage bias ranged from ?2.76 to 6.98% for GDC‐0834 and from ?6.73 to 2.21% for M1 metabolite. GDC‐0834 and M1 metabolite were stable in human plasma for 31 days at ?20 and ?70°C. This method was successfully applied to support a GDC‐0834 human pharmacokinetic‐based study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号