首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A computational fluid dynamics (CFD) model of the pyrolysis of a Loy Yang low-rank coal in a pressurised drop tube furnace (pdtf) was undertaken evaluating Arrhenius reaction rate constants. The paper also presents predictions of an isothermal flow through the drop tube furnace. In this study, a pdtf reactor operated at pressures up to 15 bar and at a temperature of 1,173 K with particle heating rates of approximately 105 K s?1 was used. The CFD model consists of two geometrical sections; flow straightner and injector. The single reaction and two competing reaction models were employed for this numerical investigation of the pyrolysis process. The results are validated against the available experimental data in terms of velocity profiles for the drop tube furnace and the particle mass loss versus particle residence times. The isothermal flow results showed reasonable agreement with the available experimental data at different locations from the injector tip. The predicted results of both the single reaction and competing reaction modes showed slightly different results. In addition, several reaction rate constants were tested and validated against the available experimental data. The most accurate results were being Badzioch and Hawksley (Ind Eng Chem Process Des Dev 9:521–530, 1970) with a single reaction model and Ubhayakar et al. (Symp (Int) Combust 16:427–436, 1977) for two competing reactions. These numerical results can provide useful information towards future modelling of the behaviour of Loy Yang coal in a full scale tangentially-fired furnace.  相似文献   

2.
The present work investigates experimentally the changes on the properties of horizontal slug flows subject to fluid injection at the wall. Measurements include data on global flow rates, pressure drop and local mean and fluctuating velocity profiles for nine different conditions. The properties of the two-phase flow are measured through a Shadow Sizer system and laser-based sensors. Two distinct flow transpiration rates are studied, \(v_{wi}^{++}\) = v w / U m = 0.0005 and 0.001. The effects of flow transpiration were observed to induce bubble break-up and large changes in the passage frequency and characteristic lengths of the unit cells. In addition to the two-phase flow results, single-phase flow measurements are presented with a view to compare the different turbulent effects introduced by the second phase. The work also proposes modifications in the models of Dukler and Hubbard (Ind. Eng. Chem. Fund. 14 337–347 (1975)) and Orell (Chem. Eng. Sci. 60 1371–1381 (2005)) so that fluid injection at the wall can be accounted for. All theoretical predictions are compared with the experimental data.  相似文献   

3.
This paper presents experimental investigations on Freon R141b flow boiling in rectangular microchannel heat sinks. The main aim is to provide an appropriate working fluid for microchannel flow boiling to meet the cooling demand of high power electronic devices. The microchannel heat sink used in this work contains 50 parallel channels, with a 60 × 200 (W × H) μm cross-section. The flow boiling heat transfer experiments are performed with R141b over mass velocities ranging from 400 to 980 kg/(m2 s) and heat flux from 40 to 700 kW/m2, and the outlet pressure satisfying the atmospheric condition. The fluid flow-rate, fluid inlet/outlet temperature, wall temperature, and pressure drop are measured. The results indicate that the mean heat transfer coefficient of R141b flow boiling in present microchannel heat sinks depends heavily on mass velocity and heat flux and can be predicted by Kandlikar’s correlation (Heat Transf Eng 25(3):86–93, 2004). The two-phase pressure drop keeps increasing as mass velocity and exit vapor quality rise.  相似文献   

4.
Kazemi et al. (SPE Reserv Eng 7(2):219–227, 1992) suggested an empirical matrix-fracture transfer function, verified based on experimental data of Mattax and Kyte (Trans AIME 225(15):177–184, 1962), to model fluid flow in naturally fractured dual porosity petroleum reservoirs using a dual-porosity numerical simulator. Their generalized shape factor should be valid for all possible irregular matrix blocks. The factor is calculated based on the volume of the matrix block, the surface open to flow in all directions and the distances of these surfaces to the centre of the matrix block. The summation is done over all open surfaces of a matrix block. Kazemi et al. (1992) showed that for rectangles and cylinders the formula reduces to the well-known forms of the shape factor. By the time, many authors indicated the validity of the formula, but no theoretical proof was offered for that so far. This study derives the Kazemi et al. (1992) shape factor using control volume finite difference discretization on the fracture-matrix dual continuum. The matrix blocks are handled as Voronoi polyhedra. The derivation is given for both isotropic and tensorial matrix permeability. Based on this derivation the authors conclude that the Kazemi et al. (SPE Reserv Eng 7(2):219–227, 1992) formula is exact under pseudo-steady-state conditions within the dual continuum mathematical concept of natural fractured dual porosity systems.  相似文献   

5.
The injection of CO2 in exploited natural gas reservoirs as a means to reduce greenhouse gas (GHG) emissions is highly attractive as it takes place in well-known geological structures of proven integrity with respect to gas leakage. The injection of a reactive gas such as CO2 puts emphasis on the possible alteration of reservoir and caprock formations and especially of the wells’ cement sheaths induced by the modification of chemical equilibria. Such studies are important for injectivity assurance, wellbore integrity, and risk assessment required for CO2 sequestration site qualification. Within a R&D project funded by Eni, we set up a numerical model to investigate the rock–cement alterations driven by the injection of CO2 into a depleted sweet natural gas pool. The simulations are performed with the TOUGHREACT simulator (Xu et al. in Comput Geosci 32:145–165, 2006) coupled to the TMGAS EOS module (Battistelli and Marcolini in Int J Greenh Gas Control 3:481–493, 2009) developed for the TOUGH2 family of reservoir simulators (Pruess et al. in TOUGH2 User’s Guide, Version 2.0, 1999). On the basis of field data, the system is considered in isothermal (50°C) and isobaric (128.5 bar) conditions. The effects of the evolving reservoir gas composition are taken into account before, during, and after CO2 injection. Fully water-saturated conditions were assumed for the cement sheath and caprock domains. The gas phase does not flow by advection from the reservoir into the interacting domains so that molecular diffusion in the aqueous phase is the most important process controlling the mass transport occurring in the system under study.  相似文献   

6.
We present convergence results for an adaptive algorithm to compute free energies, namely the adaptive biasing force (ABF) method (Darve and Pohorille in J Chem Phys 115(20):9169–9183, 2001; Hénin and Chipot in J Chem Phys 121:2904, 2004). The free energy is the effective potential associated to a so-called reaction coordinate ξ(q), where q = (q 1, … , q 3N ) is the position vector of an N-particle system. Computing free energy differences remains an important challenge in molecular dynamics due to the presence of metastable regions in the potential energy surface. The ABF method uses an on-the-fly estimate of the free energy to bias dynamics and overcome metastability. Using entropy arguments and logarithmic Sobolev inequalities, previous results have shown that the rate of convergence of the ABF method is limited by the metastable features of the canonical measures conditioned to being at fixed values of ξ (Lelièvre et al. in Nonlinearity 21(6):1155–1181, 2008). In this paper, we present an improvement on the existing results in the presence of such metastabilities, which is a generic case encountered in practice. More precisely, we study the so-called bi-channel case, where two channels along the reaction coordinate direction exist between an initial and final state, the channels being separated from each other by a region of very low probability. With hypotheses made on ‘channel-dependent’ conditional measures, we show on a bi-channel model, which we introduce, that the convergence of the ABF method is, in fact, not limited by metastabilities in directions orthogonal to ξ under two crucial assumptions: (i) exchange between the two channels is possible for some values of ξ and (ii) the free energy is a good bias in each channel. This theoretical result supports recent numerical experiments (Minoukadeh et al. in J Chem Theory Comput 6:1008–1017, 2010), where the efficiency of the ABF approach is demonstrated for such a multiple-channel situation.  相似文献   

7.
We study rates of convergence of solutions in L 2 and H 1/2 for a family of elliptic systems {Le}{\{\mathcal{L}_\varepsilon\}} with rapidly oscillating coefficients in Lipschitz domains with Dirichlet or Neumann boundary conditions. As a consequence, we obtain convergence rates for Dirichlet, Neumann, and Steklov eigenvalues of {Le}{\{\mathcal{L}_\varepsilon\}} . Most of our results, which rely on the recently established uniform estimates for the L 2 Dirichlet and Neumann problems in Kenig and Shen (Math Ann 350:867–917, 2011; Commun Pure Appl Math 64:1–44, 2011) are new even for smooth domains.  相似文献   

8.
9.
The theory of thin wires developed in Dret and Meunier (Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 337:143–147, 2003) is adapted to phase-transforming materials with large elastic moduli in the sense discussed in James and Rizzoni (J Elast 59:399–436, 2000). The result is a one-dimensional constitutive model for shape memory wires, characterized by a small number of material constants. The model is used to analyze self-accommodated and detwinned microstructures and to study superelasticity. It also turns out that the model successfully reproduces the behavior of shape memory wires in experiments of restrained recovery (Tsoi et al. in Mater Sci Eng A 368:299–310, 2004; Tsoi in 50:3535–3544, 2002; S̆ittner et al. in Mater Sci Eng A 286:298–311, 2000; vokoun in Smart Mater Struct 12:680–685, 2003; Zheng and Cui in Intermetallics 12:1305–1309, 2004; Zheng et al. in J Mater Sci Technol 20(4):390–394, 2004). In particular, the model is able to predict the shift to higher transformation temperatures on heating. The model also captures the effect of prestraining on the evolution of the recovery stress and of the martensite volume fraction.  相似文献   

10.
We prove the global existence of solutions for a shape-memory alloys constitutive model at finite strains. The model has been presented in Evangelista et al. (Int J Numer Methods Eng 81(6):761–785, 2010) and corresponds to a suitable finite-strain version of the celebrated Souza–Auricchio model for SMAs (Auricchio and Petrini in Int J Numer Methods Eng 55:1255–1284, 2002; Souza et al. in J Mech A Solids 17:789–806, 1998). We reformulate the model in purely variational fashion under the form of a rate-independent process. Existence of suitably weak (energetic) solutions to the model is obtained by passing to the limit within a constructive time-discretization procedure.  相似文献   

11.
A model is proposed for coupling the one-dimensional transport of solute with surface precipitation kinetics which induces the clogging of an initially homogeneous porous medium. The aim is to focus the non-linear feedback effect between the transport and the chemical reaction through the permeability of the medium. A Lagrangian formulation, used to solve the coupled differential equations, gives semi-analytical expressions of the hydrodynamic quantities. A detailed analysis reveals that the competition between the microscopic and macroscopic scales controls the clogging mechanism, which differs depends on whether short or long times are considered. In order to illustrate this analysis, more quantitative results were obtained in the case of a second and zeroth order kinetic. It was necessary to circumvent the semi-analytic character of the solutions problem by successive approximation. A comparison with results obtained by simulations displays a good agreement during the most part of the clogging time.Nomenclature a(x, t) Capillary tube radius (L) - A (aq) Chemical species in the aqueous phase - A n(s) Chemical species of the solid phase - C(x, t) Aqueous concentration in a capillary tube ([mole/L3] in the case of a permanent injection - [mole/L3/L] in the case of an instantaneous injection) - C(x, t) C(x, t)/C 0 Dimensionless aqueous concentration in a capillary tube - C 0 Aqueous concentration imposed at the inlet and also initial concentration in an elementary volume of fluid (mole/L3) - C i(t) Concentration in a fluid element i (mole/L3) - C(R) (t, Co) Aqueous concentration in a stirred reactor (mole/L3) - dij (t) Length belonging to the volume, inside a fluid element i, which interacts with a precipitate element j (L) - dM ij(t) Mass exchange between a fluid element i and a precipitate element j (M) - dN 0 Number of molecules in an elementary volume of fluid injected at the inlet of a capillary tube during dt 0 - dN(x, t, C0) Number of molecules in an elementary volume of fluid - dt 0 Time injection of an elementary volume of fluid (T) - D(x, t) Dispersion coefficient (L2/T) - Da(t, x) Damköhler number - D m Molecular diffusion coefficient (L2/T) - F(x, t) Advective flux (mole/L2/T) - k 1 Kinetic constant of dissolution (mole/L3/T) - k 2 Kinetic constant of precipitation ([mole/L3]1 - n /T) - k 2 Kinetic constant of precipitation in the case of a zeroth order kinetics (mole/L3/T) - K(x, t) Permeability in a capillary tube (L2) - K(x, t) K (x, t)/K0 Dimensionless permeability - k 0 Permeability of a capillary tube at t = 0 (L2) - L Length of a capillary tube (L) - m Molecular weight of the reactive species (M/mole) - n Stochiometry of the chemical reaction and kinetic order of the precipitation reaction - P(x, t) Precipitate concentration in a capillary tube (mole/L3) - P j(t) Concentration in a precipitate element j (mole/L3) - P(r) (t, Co) Precipitate concentration in a stirred reactor (mole/L3) - Pr(x, t) Local pressure in a capillary tube - (M/T2/L3) Pr(x, t) Pr(x, t)/Pr(x, 0) Dimensionless local pressure in a capillary tube - Q(t) Flow rate (L3/T) - Q(t) Q(t)U 0/S0 Dimensionless flow rate - R(x, t) Chemical flux between the aqueous and the solid phase in a capillary tube (mole/L3/T) - R i(t) Chemical flux between an aqueous element i and the solid phase (mole/L3/T) - R (R)[t, C0] Chemical flux between the aqueous and the solid phase in a stirred reactor (mole/L3/T) - S(x, t) Cross sectional area of a capillary tube accessible to the aqueous phase (L2) - S(x, t) S(x, t)/S0 Dimensionless cross-sectional area - S 0 Cross-sectional area of a capillary tube at t = 0 (L2) - tlim(x) Time at which the precipitation front concentration vanishes in the case of zeroth order kinetics (T) - t max Time of maximum propagation of the precipitation front in the case of zeroth order kinetics (T) - tmin(x) Time at which the precipitation front arrives at x (T) - t p L/U 0. Time necessary for an elementary volume of fluid, moving with the velocity U 0, to reach the oulet of the medium - t U max Time of maximum value of the velocity field in the case of zeroth order kinetics (T) - t 0 Time at which an elementary volume of fluid has left the inlet of a capillary tube (T) - t 0m (x, t) Time at which the last elementary volume of fluid has left the inlet of a capillary tube to reach x at a time lower or equal to t (T) - U(x, t) Fluid velocity (L/T) - U(x, t) U(x, t)/U 0. Dimensionless fluid velocity - U j(x, t) Fluid velocity defined from the precipitate element j (L/T) - U l (t0, t) Lagrangian fluid velocity (L/T) - U l (t 0, t) U l (x, t)/U 0. Dimensionless lagrangian fluid velocity - U 0 Velocity of the fluid at t = 0 (L/T) - V ij(t) Volume, inside a fluid element i, which interacts with a precipitate element j (L3) - x i(t) Front position of the fluid element i (L) - x j Front position of the precipitate element j (L) - X front(t) Position of the precipitation front (L) - x lim(t) Position of the precipitation front when the value of its concentration is zero (L) - xmax Position of the maximum propagation of the precipitation front in the case of zeroth order kinetics and for high value of C 0 (L) - Xmin (t) Position of the precipitation front (L) - x inf* supmax Position of the maximum propagation of the precipitation front in the case of zeroth order kinetics and for small value of Co (L) Greek Symbols t Time step used during the numerical computation (T) - Pro Imposed pressure drop (M/L/T2) - Injection time of reactive species (T) - Density of the precipitate (M/L3) - Dynamic viscosity (M/L/T) - <Ri(t)> infi supj Mean chemical flux between a precipitate element j and all the fluid elements i susceptible to interact with the precipitate element j (mole/L3/T)  相似文献   

12.
Slow sedimentation of a deformable drop of Bingham fluid in an unbounded Newtonian medium is studied using a variation of the integral equation method (Toose et al., J Eng Math 30:131–150, 1996, Int J Numer Methods Fluids 30:653–674, 1999). The Green function for the Stokes equation is used, and the non-Newtonian stress is treated as a source term. The computations are performed for a range of physical parameters of the system. It is demonstrated that initially deformed drop similar to Newtonian ones breaks up for high capillary number, Ca, and stabilizes to steady shapes at low Ca. Estimations of critical capillary number for specific initial deformations demonstrated its growth (increase in the stability of the drop) with the yield stress magnitude both for prolate and oblate initial shapes. Prolate initial shapes become more stable with the increase of the plastic viscosity. In contrast to this, for low yield stress, oblate shapes are destabilized with the growth of the plastic viscosity. This effect is similar to the effect of the viscosity of a Newtonian drop on its stability. However, at higher yield stress, the effect of plastic viscosity is reversed.  相似文献   

13.
Liquid drop impacts on a smooth surface were studied at elevated chamber pressures to characterize the effect of gas pressure on drop spreading and splashing. Five common liquids were tested at impact speeds between 1.0 and 3.5 m/s and pressure up to 12 bars. Based on experiments at atmospheric pressure, a modification to the “free spreading” model (Scheller and Bousfield in AIChE Paper 41(6):1357–1367, 1995) has been proposed that improves the prediction accuracy of maximum spread factors from an error of 15–5%. At high chamber pressures, drop spreading and maximum spread factor were found to be independent of pressure. The splash ratio (Xu et al. in Phys Rev Lett 94:184505, 2005) showed a non-constant behavior, and a power-law model was demonstrated to predict the increase in splash ratio with decreasing impact speed in the low impact speed regime. Also, drop shape was found to affect splash promotion or suppression for an asymmetry greater than 7–8% of the equivalent drop diameter. The observations of the current work could be especially useful for the study of formation of deposits and wall combustion in engine cylinders.  相似文献   

14.
In dual porosity modeling of naturally fractured reservoirs, fluids exchange between the high porous matrix blocks and high permeable fracture systems is governed by transfer function. Therefore, transfer function, and specially shape factor as the main part of it, control fluids flow behavior, which certainly have significant effects on development and management plan of naturally fractured reservoirs. Also several formulations have been proposed for shape factor by a number of researchers, nearly all of them derived for expansion mechanism. But, shape factor is a phase sensitive parameter that can greatly affect results of simulation. Moreover, several shortcomings are inherent in the derived expressions of shape factor for imbibition process. The main aim of this work is to develop a new time-dependent matrix–fracture shape factor specific to countercurrent imbibition. In this study, fluid saturation distribution within a matrix block is analytically derived by solving capillary–diffusion equation under different imposed boundary conditions for the process where countercurrent imbibition is the dominant oil drive mechanism. The validity of the solutions is checked against literature experimental data (Bourbiaux and Kalaydjian, SPERE 5, 361–368, SPE 18283, 1990) and also by performing single porosity fine grid simulations. Then, the concept of analogy between the transport phenomena is employed to propose a new expression for matrix–fracture transfer function that is used to derive transient shape factor. It is illustrated in this article that time variation of imbibtion rate and shape factor can be used to diagnose different states of imbibition process. Although, the displacement process and employed approaches are completely different in this and other studies (Chang, Technical report, 1993; Kazemi and Gilman (eds.) Flow and contaminant transport in fractured rock. Academic Press, San Dieg, 1993; Zimmerman et al., Water Resour Res, 29, 2127–2137, 1993; Lim and Aziz, J Pet Sci Eng 13, 169–178, 1995), but we arrived at the consistent values of shape factor under limiting condition of pseudo steady state flow. This means that after establishment of pseudo steady state, shape factor is only controlled by matrix geometry regardless of the displacement process, i.e., expansion or imbibition mechanism, However, shape factor is completely phase sensitive and process dependent during unsteady and late-transient states. Finally, boundary condition dependency of shape factor is investigated.  相似文献   

15.
The pressure drop, the liquid holdup, as well as the liquid film mass transfer coefficients (kL) for a modified Raschig packing, with turbulence promoters, used in absorption columns, were determined experimentally. The aim of this work is to verify the improved mass transfer properties of this new packing for the randomly and, particularly, for the arranged packed columns. The experiments were performed at gas velocities ranging from 800 to 2,000 m h?1 and liquid velocities scaling between 2.5 and 8.11 m h?1, ranges that cover most of the absorption column operation conditions. Experimental data and correlations for the pressure drop, the liquid holdup and the gas–liquid mass transfer coefficients (kL) for modified Raschig ring packed columns are presented. The influence of the gas and the liquid velocities on the column hydrodynamics and the mass transfer coefficients have been obtained experimentally and also, have been compared with literature data.  相似文献   

16.
Although there has been renewed interest in the use of fractional models in many application areas, in reality fractional analysis has a long and distinguished history and can be traced back to the likes of Leibniz (Letter to L’Hospital, 1695), Liouville (J. éc. Polytech. 13:71, 1832), and Riemann (Gesammelte Werke, p. 62, 1876). Recent publications (Podlubny in Math. Sci. Eng. 198, 1999; Sabatier et al. in Advances in fractional calculus: theoretical developments and applications in physics and engineering, Springer, Berlin, 2007; Das in Functional fractional calculus for system identification and controls, Springer, Berlin, 2007) demonstrate that fractional derivative models have found widespread applications in science and engineering. Late fundamental considerations have led to the introduction of fractional calculus in continuum mechanics in an attempt to develop non-local constitutive relations (Lazopoulos in Mech. Res. Commun. 33:753–757, 2006). Attempts have also been made to model microscopic forces using fractional derivatives (Vazquez in Nonlinear waves: classical and quantum aspects, pp. 129–133, 2004). Our approach in this paper differs from previous theoretical work, in that we develop a general framework directly from the classical continuum mechanics, by defining the laws of motion and the stresses using fractional derivatives. The timeliness and relevance of this work is justified by the surge in interest in applications of fractional order models to biological, physical and economic systems. The aim of the present paper is to lay the foundations for a new non-local model of continuum mechanics based on fractional order derivatives which we will refer to as the fractional model of continuum mechanics. Following the theoretical development, we apply this framework to two one-dimensional model problems: the deformation of an infinite bar subjected to a self-equilibrated load distribution, and the propagation of longitudinal waves in a thin finite bar.  相似文献   

17.
This study presents the dynamic capillary pressure model (Hassanizadeh and Gray, Adv Water Resour 13:169–186, 1990; Water Resour Res 29:3389–3405, 1993) adapted for the needs of paper manufacturing process simulations. The dynamic capillary pressure–saturation relation is included in a one-dimensional simulation model for the pressing section of a paper machine. The one-dimensional model is derived from a two-dimensional model by averaging with respect to the vertical direction. Then, the model is discretized by the finite volume method and solved by Newton’s method. The numerical experiments are carried out for parameters typical for the paper layer. The dynamic capillary pressure–saturation relation shows significant influence on the distribution of water pressure. The behavior of the solution agrees with laboratory experiments (Beck, Fluid pressure in a press nip: measurements and conclusions, 1983).  相似文献   

18.
Lift coefficients, CL, of single bubbles in linear shear flows are measured to investigate effects of the bubble shape, the liquid velocity gradient and the fluid property on CL. The range of the Morton number, M, tested is from logM = − 6.6 to − 3.2. The shapes of bubbles are spherical and ellipsoidal. A correlation of bubble aspect ratio for single bubbles in infinite stagnant liquids proposed in our previous study can give good evaluations for bubbles in the linear shear flows. The CL of spherical bubbles at low bubble Reynolds numbers, Re, depend on the dimensionless shear rate Sr and Re and decrease with increasing Re. These characteristics agree with the Legendre-Magnaudet correlation. The use of a single dimensionless group such as Re, the Eötvös number, the Weber number and the Capillary number cannot correlate CL of non-spherical bubbles. The trend of the critical Re for the reversal of the sign of CL is the same as that for the onset of oscillation of bubble motion, which supports the mechanism proposed by Adoua et al., at least within the range of −6.6 ≤ logM ≤ −3.2. An experimental database of CL is provided for validation of available CL models and CFD.  相似文献   

19.
The effects of shear, uniaxial extension and temperature on the flow-induced crystallization of two different types of high-density polyethylene (a metallocene and a ZN-HDPE) are examined using rheometry. Shear and uniaxial extension experiments were performed at temperatures below and well above the peak melting point of the polyethylenes in order to characterize their flow-induced crystallization behavior at rates relevant to processing (elongational rates up to 30 s − 1 and shear rates 1 to 1,000 s − 1 depending on the application). Generally, strain and strain rate found to enhance crystallization in both shear and elongation. In particular, extensional flow was found to be a much stronger stimulus for polymer crystallization compared to shear. At temperatures well above the melting peak point (up to 25°C), polymer crystallized under elongational flow, while there was no sign of crystallization under simple shear. A modified Kolmogorov crystallization model (Kolmogorov, Bull Akad Sci USSR, Class Sci, Math Nat 1:355–359, 1937) proposed by Tanner and Qi (Chem Eng Sci 64:4576–4579, 2009) was used to describe the crystallization kinetics under both shear and elongational flow at different temperatures.  相似文献   

20.
Deformation and wobbling of a liquid drop immersed in a liquid matrix were studied under mild shear conditions for various viscosity ratios. In situ visualization experiments were conducted on a homemade transparent Couette cell incorporated to the Paar Physica MCR500 shear rheometer. The effect of drop or matrix elasticity was examined and was found to play a major role in both deformation and wobbling processes. Experimental results were compared to Jackson and Tucker (J Rheol 47:659–682, 2003), Maffettone and Minale (J Non-Newton Fluid Mech 78:227–241, 1998) and Yu and Bousmina (J Rheol 47:1011–1039, 2003) ellipsoidal models. It was found that the agreement between the Newtonian models and the experimental results required an increase in the drop viscosity. Such increment in viscosity was found to scale with the first normal stress difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号