首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied submonolayer adsorption, at room temperature, of iodine on the (111) faces of silver and copper, using LEED and XPS. In both systems the √3 × √3 LEED pattern appears at ~0.2 monolayer (ML) coverage; no other superlattice pattern was observed. The I 4d52 core electron binding energy in both cases decreases by ~0.15 eV between very dilute coverage and 0.33 ML. The leveling-off of the binding energy for I/Ag(111) for coverages >0.2 ML is shown to be a unique experimental manifestation of an indirect, substrate-mediated adatom-adatom interaction, an attraction of several meV between next-nearest neighbor iodine atoms. The more nearly linear decrease in the I binding energy on Cu(111) is shown to imply a significantly weaker next-nearest neighbor interaction on this surface. The appearance of the √3 × √3 LEED pattern at low coverages on Cu is shown to be consistent with short-range order produced merely by a size effect, that is, by nearest neighbor exclusion. These conclusions are reached with the help of Monte Carlo calculations of a triangular lattice gas.  相似文献   

2.
X-ray photoelectron spectroscopy (ESCA) has been used to study the physical adsorption of Xe and the chemisorption of oxygen by W (111). An ultrahigh vacuum ESCA spectrometer has been modified such that thermal desorption behavior from the W (111) crystal can be directly compared with ESCA spectra of the adsorbed species. In addition, since the work function of a W (111) crystal covered with one monolayer of Xe is accurately known from previous work, the binding energy of the Xe (3d52) adsorbate level can be accurately compared to the gaseous Xe (3d52) level.When Xe is physisorbed to 1 monolayer the Xe (3d52) level exhibits a binding energy (relative to the vacuum level) which is 2.1 eV below that found for Xe (g). At lower Xe coverages the shift becomes monotonically greater, approaching 2.6 eV at a Xe coverage of 0.05. This 0.5 eV shift downward is accompanied by an increase of only 0.05 eV in adsorption energy as coverage decreases, and may be partially caused by the presence of ~ 10–20 % of extraneous adsorption sites other than W (111) which adsorb Xe with higher adsorption energy. The adsorption energy of Xe may also be increased by coadsorption of oxygen and the Xe (3d52) binding energy exhibits a corresponding shift downward as adsorbed oxygen coverage is increased to θo = 0.5. Electronic relaxation processes affecting the final state are dominant factors in determining the magnitude of the chemical shift upon adsorption, in agreement with the predictions of Shirley. The magnitude of the relaxation effect seems to be very sensitive to small changes in Xe adsorption energy. Similar effects have been seen for chemisorption of CO.The adsorption of O2 at 120 K by W (111) yields a single broad O(1s) peak whose line-width decreases with increasing coverage. The final spectra at θo = 1 monolayer are very similar to those obtained at temperatures of 300 K or above on polycrystalline tungsten.  相似文献   

3.
HBr and HCl react with Pt(111) and Pt(100) surfaces to form adsorbed layers consisting of specific mixtures of halogen atoms and hydrogen halide molecules. Exposure of Pt(111) to HBr yielded a (3×3) LEED pattern beginning at ΘBr = 29 and persisting at the maximum coverage which consisted of ΘBr = 13 plus ΘHBr = 19. The most probable structure at maximum coverage, Pt(111)[c(3 × 3)]-(3 Br + HBr), nas a rhombic unit cell encompassing nine surface Pt atoms, and containing three Br atoms and one HBr molecule. On Pt(100) the structure at maximum coverage appears to be Pt(100)[c(2√2 × √2)]R45°-(Br + HBr), ΘBr = ΘHBr = 14; the rectangular unit cell involves four Pt atoms, one Br atom and one HBr molecule. Each of these structures consists of an hexagonal array of adsorbed atoms or molecules, excepting slight distortion for best fit with the substrate in the case of Pt(100). Treatment of Pt(100) with HCl produced a diffuse Pt(100)(2 × 2)-(Cl + HCl) structure at the maximum coverage of ΘCl = 0.13, ΘHCl = 0.11. Exposure of Pt(111) to HCl produced a disordered overlayer. Thermal desorption, Auger spectroscopy and mass spectroscopy provided coverage data. Thermal desorption data reveal prominent rate maxima associated with the structural transitions observed by LEED. Br and HBr, Cl and HCl were the predominant thermal desorption products.  相似文献   

4.
Reflection absorption infrared spectroscopy has been used in conjunction with LEED and surface potential measurements to study low temperature CO adsorption on the oxidised Cu surfaces Cu(111)O|32?2|, Cu(110)O(2 × 1) and Cu(110)Oc(6 × 2). On all three surfaces adsorption at 80 K yields surface potential changes in excess of 0.6 V and does not lead to the formation of an ordered overlayer. At high coverages the adsorption enthalpy is lower than on the clean surfaces. Infrared spectra show the growth of a doublet band with components initially at 2100 and 2117 cm?1 on the oxidised Cu(111) surface. Similar features seen on the oxidised Cu(110) surfaces are accompanied by a band at 2140 cm?1: a very weak band at the same frequency on oxidised Cu(111) is attributed to defect sites. Studies of the temperature dependence of the spectrum from oxidised Cu(111) lead to the conclusion that two different binding sites are occupied. Spectra of 12CO13CO mixtures show that the molecules occupying these sites are in close proximity to each other, and that the spectrum is subject to large but opposing coverage-dependent frequency shifts.  相似文献   

5.
Alkali atoms were scattered with hyperthermal energies from a clean and an oxygen covered (θ ≈ 0.5 ML) W(110) surface. The trapping probability of K and Na atoms on oxygen covered W(110) has been measured as a function of incoming energy (0–30 eV) and incident angle. A considerable enhancement of trapping on the oxygen covered surface compared to a clean surface was observed. At energies above 25 eV there are still K and Na atoms being trapped by the oxygen covered surface. From the temperature dependence of the mean residence time τ of the initially trapped atoms the pre-exponential factor τ0 and the desorption energy Q were derived using the relation: τ = τ0exp(QkTs). On clean W(110) we obtained for Li: τ0 = (8 ± 84) × 10?14sec, Q = (2.78 ± 0.09) eV; for Na: τ0 = (9 ± 3) × 10?14 sec, Q = (2.55 ± 0.04) eV; and for K: τ0 = (4 ± 1) × 10?13 sec, Q = (2.05 ± 0.02) eV. Oxygen covered W(110) gave for Na: τ0 = (7 ±3) × 10?15 sec, Q = (2.88 ± 0.05) eV; and for K: τ0 = (1.3 ± 0.90.6) × 10?14sec, Q = (2.48 ±0.05) eV. The adsorption on clean W(110) has the features of a supermobile two-dimentional gas; on the oxygen covered W(110) adsorbed atoms have the partition function of a one-dimen-sional gas. The binding of the adatoms to the surface has a highly ionic character in the systems of the present experiment. An estimate is given for the screening length of the non-perfect conductor W(110):ks?1≈ 0.5 Å.  相似文献   

6.
The interaction of nickel carbonyl, Ni(CO)4, with evaporated palladium and iron surfaces has been studied at 90 and 290 K by X-ray photoelectron spectroscopy. The carbonyl is weakly adsorbed in molecular form at 90 K on the metals giving a Ni 2p32 peak at 854.6 eV, a C 1s at 287.2 eV and an O 1s at 533.8 eV. Some fraction of the carbonyl decomposes even at 90 K on iron to give deposited nickel atoms. In the interaction with palladium at 290 K, deposited nickel atoms (Ni 2p32 = 852.9 eV) and chemisorbed CO are observed. A satellite feature of the Ni 2p32 peak varies depending on the quantity of the deposited nickel atoms; the main peak-satellite separation increases with increase in the quantity. The same variation is observed for evaporated nickel-palladium alloys. This can be ascribed to the difference in the electronic states of the nickel atoms. The difference is reflected in the reactivity of the atoms with O2. With iron the deposited nickel atoms show an increase in binding energy of 0.4 eV in the Ni 2p32 Peak and no satellite when the number of nickel atoms is small. The oxidation of the surface is also studied.  相似文献   

7.
The coverages of adsorbed oxygen and CO on an Ir(111) surface have been determined using X-ray photoelectron spectroscopy (XPS) during the steady-state catalytic production of CO2. Correlating the coverages of the reacting adsorbates with the rate of CO2 production allows the kinetics of the CO oxidation reaction to be determined. The reaction is found to obey a Langmuir-Hinshelwood rate expression of the form RCO22 = k0[CO][O]exp(?EakT), where RCO2 is the rate of CO2 production, k0 is the pre-exponential factor of the reaction rate coefficient, [CO] and [O] are the surface coverages of CO and oxygen, respectively, and Ea is the activation energy for the oxidation reaction. The activation energy for this catalytic oxidation reaction is found to be approximately 9 kcalmole.  相似文献   

8.
Planar channelling of 1, 1.5 and 2 MeV 4He+ ions along (100), (110) and (111) MgO have been studied experimentally using Rutherford backscattering. Values of the half angle ψP12, shoulder half angle ψs12 and surface minimum yield xPmin have been determined for channelling with respect to the two sublattices. Agreements and discrepancies with existing theories are discussed.  相似文献   

9.
The monolayer of adsorbed xenon on the (
1) surface of silver was studied using low- energy electron diffraction. The structure is an hexagonal lattice aligned with but out of registry with the substrate. The Xe-Xe spacing at 25 K is 4.44 ± 0.01 Å in the full monolayer and 4.47 ± at less than full coverage. The Xe-Ag spacing is 3.5 ± 0.1 Å. Here 〈u2T, the meansquare vibrational amplitude normal to the surface divided by the temperature is (1.83 ± 0.4 × 10?4 A2/K. The heat of adsorption is 0.28 ± 0.03 eV/atom.  相似文献   

10.
Angle-resolved photoemission spectroscopy utilizing synchrotron radiation has been used to study the band structure of the c(2×2) and (3×1) oxygen overlayers on Fe(110). The symmetries of the O-2p-derived states at the center of the surface Brillouin zone (Γ) were identified using polarized light. At Γ the pxpy- and pz-derived levels are at about 5.5 and 7.0 eV below the Fermi level, respectively, for both ordered overlayers. The p-states of the c(2×2)-O structure show very little dispersion (?0.1 eV) with k. On the other hand, the c(3×1)-O overlayer exhibits considerable dispersion of ~1.6 eV. The essential features of the measured dispersion are reproduced well by the dispersion predicted in a qualitative way for an isolated c(3×1) oxygen monolayer.  相似文献   

11.
Ultrathin epitaxial NiSi2 films (0–40 Å) have been grown on Si(111) surfaces. Medium energy ion shadowing and blocking has been used to determine the orientation, morphology and interfacial order of these films. For the whole coverage range studied ((0–1) × 1016 Ni atomscm2) the films are found to be rotated 180° about the surface normal with respect to the Si(111) substrate. Using the high depth resolution of the technique the annealed films are shown to consist initially of islands, which coalesce into continuous films for coverages above ≈ 5 × 1015 Ni atomscm2. High resolution cross-section transmission electron microscopy shows the NiSi2Si interface to be atomically abrupt. This interface has been probed directly using the ion channeling technique, and the number of disordered Ni atoms at the interface is found to be less than 7.5 × 1013atomscm2.  相似文献   

12.
The adsorption of Xe on a Ni(100) surface has been studied in UHV between 30 and 100 K using LEED, thermal desorption spectroscopy (TDS), work function (Δφ) measurements, and UV photoemission (UPS). At and below 80 K, Xe adsorbs readily with high initial sticking probability and via precursor state adsorption kinetics to form a partially ordered phase. This phase has a binding energy of ~5.2 kcal/mole as determined by isosteric heat measurements. The heat of adsorption is fairly constant up to medium coverages and then drops continuously as the coverage increases, indicating repulsive mutual interactions. The thermal desorption is first order with a preexponential factor of about 1012 s?1, indicative of completely mobile adsorption. Adsorbed Xe lowers the work function of the Ni surface by 376 mV at monolayer coverage. (This coverage is determined from LEED to be 5.65 × 1014 Xe molecules/cm-2.) For not too high coverages, θ, Δφ(θ) can be described by the Topping model, with the initial dipole moment μ0 = 0.29 D and the polarizability α being 3.5 × 10?24 cm3. In photoemission, the Xe 5p32 and 5p12 orbitals show up as intense peaks at 5.56 and 6.83 eV below Ef which do not shift their position as the coverage varies. Multilayer adsorption (i.e. the filling of the second and third layers) can be seen by TDS. The binding energies of these α states can be estimated to range between 4.5 and 3.5 kcal/mole. The results are compared and contrasted with previous findings of Xe adsorption on other transition metal surfaces and are discussed with respect to the nature of the inert-gas-metal adsorptive bond.  相似文献   

13.
14.
The γ-decay of the deeply-bound hole states in 111Sn has been investigated at 32 MeV incident energy by means of the 112Sn(3He, αγ) reaction. The α-particles emitted near 0° were detected in a Si counter located at the image plan of the superconducting solenoidal spectrometer SOLENO. The γ-rays in coincidence with the α-particles were detected by two Ge(Li) detectors located at 90° and 142° with respect to the beam direction, respectively. Energies, spins and decay schemes have been established for the low-lying states up to 2.5 MeV excitation energy in 111Sn. The γ-decay of the broad bump, located around 4.2 MeV and previously attributed to neutron pick-up from the inner 1g92, 2p12, and 2p32 neutron. Subshells, reveals the importance of quasiparticle-phonon m the spreading mechanism of the inner-hole strengths. The 1g92 and 2p strength functions have been deduced from the α-decay of the enhanced structures (3 ≦ Ex≦ 8 MeV). They are compared to the ones measured in previous inclusive neutron pick-up experiments and to those calculated in the framework of the quasiparticle-phonon nuclear model.  相似文献   

15.
The adsorption of CO and O on Ni (111) was studied by low-energy ion scattering (ISS) and low-energy electron diffraction (LEED). For the ordered (√7/2) × (√7/2) R19.1° CO layer ion scattering gives a coverage greater than 12 monolayer, and for the (2 × 2) O layer a coverage of 14 monolayer. The CO is non-dissociatively adsorbed, with the C bound to the Ni. The molecules are oriented parallel to the surface normal. Island formation at lower CO coverages is possible.  相似文献   

16.
Elastic low energy electron diffraction (LEED) intensity-energy (I-E) measurements for clean (001), (110), and (111) nickel surfaces were obtained at room temperature. Surface composition was monitored by Auger spectroscopy. I-E data from 15 to 220 eV were obtained at normal incidence for the non specular beams and for the specular beams at incidence angles from 4° to 20° on the 0° and 45° azimuths of (001), on the 0° and 90° azimuths of (110), and on the 0° azimuth of (111) nickel. Normalization of the data was performed electronically during data acquisition. Intensities were calibrated with the use of a shielded, biased Faraday collector. The effects of instrumental and experimental uncertainties were examined and minimized to obtain intensities accurate to ± 15 %, energy scales accurate to ± 0.35 eV, and incident and azimuthal angles accurate to ± 0.25° and ± 1.0° respectively.All nickel surfaces have I-E spectra which are characteristic of strong multiple scattering. Angular evolution features for (001) and (110) spectra may be correlated with intraplanar resonances associated with the onset of propagating beams. Only the (001) surfaces were found to have pronounced, sharp resonance features associated with surface barrier resonances and inelastic loss processes. Kinematic analysis of the Lorenzian-shaped I-E peaks on all surfaces in consistent with surface expansion using either an energy-dependent or a constant inner potential of 10.75 ± 0.5 eV. The widths of these same peaks on all surfaces were found to vary as E12 above 40 eV and E13 below.  相似文献   

17.
Soft X-ray photoemission experiments have led to the unambiguous observation of a metal surface core level (Pt 4f72) shift, due to an adsorbate (CO), to a binding energy larger than the bulk binding energy. The 4f72 clean (110) surface component, with a binding energy 0.35 ± 0.02 eV lower than the bulk, is shifted by 1.06 ± 0.04 eV towards higher binding energy upon CO chemisorption. The lack of significant changes in the bulk component indicates the localized nature of the CO-Pt surface bonding.  相似文献   

18.
Angle-resolved ultraviolet photoelectron spectra have been measured for well defined Ag/Si(111) submonolayer interfaces of (1) Si(111)(3 × 3)R30°-Ag, (2) “Si(111)(6 × 1)-Ag”, and (3) Ag/Si(111) as deposited at room temperature. Non-dispersive and very narrow (FWHM ~ 0.4–0.5 eV) Ag 4d derived peaks are found at 5.6 and 6.5 eV below the Fermi level for surface (1) and at 5.3 and 6.0 eV for surface (2). Dispersions of sp “binding” states in the energy range between EF and Ag 4d states have been precisely determined for surface (1). Electronic structures similar to those of the Ag(111) surface, including the surface state near EF, have been observed for surface (3).  相似文献   

19.
The interaction of oxygen with polycrystalline cobalt surfaces has been studied at 300 K (1 × 10?6 to 1 × 10?5 Torr) using high-resolution (monochromatized) X-ray photoemission. At high exposures (> 100 L nominal) CoO is identified as the product from the nature of the Co 2p32, 2p12, 3s, and valence band spectra. There is no evidence for measurable amounts of Co3O4 or Co2O3. Two O 1s features are observed at both high and low (10L) exposures. The dominant O 1s feature at 529.5 ± 0.2 eV corresponds to the oxide and a minor feature at 531.3 ± 0.2 eV is attributed to non-stoichiometric surface oxygen. Exposure to air produces quite different results, with a dominant O 1s feature at 531.5 ± 0.2 eV and dominant Co 2p32 and 2p12 features centered at 781.3 ± 0.2 eV and 797.1 ± 0.2 eV. These three values are very close to those reported here for bulk Co(OH)2. Ion etching of the air-exposed surface removes this dominant surface product rapidly revealing some oxide and finally metal.  相似文献   

20.
A Study of electronic conductivity using the d.c. polarization technique has been carried out in α and β-AgI which shows the former is a hole and the latter an electron conductor. Activation energies of undoped and Cu-doped single crystals and polycrystalline β-AgI were found to be 0.46 eV, 0.34 eV and 0.44 eV respectively and can be related to electron trap depths. The electron transference number (σθσt) for polycrystalline β-AgI was found to be 0.008 at 306 K. The activation energy for hole conduction in α-AgI was determined to be 0.97 eV in agreement with previous XPS studies.Transient measurements have also been conducted using the charge transfer technique in double cells of polycrystalline β-AgI. The carrier concentration Cθ and electron mobility μθ, have thus been estimated to be 1.8 × 1015cm3 and 5.14 × 10?5cm2V?sec. respectively at 306 K, while the double layer capacitance was 0.496 μFcm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号