首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electrochemically active polymers have been formed during electro-reduction carried out in solution containing fullerenes, C60 or C70, and transition metal complexes of Pd(II), Pt(II), Rh(III), and Ir(I). In these films, fullerene moieties are covalently bounded to transition metal atoms (Pd and Pt) or their complexes (Rh and Ir) to form a polymeric network. All films exhibit electrochemical activity at negative potentials due to the fullerene cages reduction process. For all studied metal complexes, yields of formation of films containing C70 are higher than yields of electrodeposition of their C60 analogs. C70 /M films also exhibit higher porosity in comparison to C60/M layers. The differences in film morphology and efficiency of polymer formation are responsible for differences in electrochemical responses of these films in acetonitrile containing supporting electrolyte only. C70/M films shows more reversible voltammeric behavior in negative potential range. They also show higher potential range of electrochemical stability. Processes of film formation and electrochemical properties of polymers depend on the transition metal ions or atoms bonding fullerene cages into polymeric network. The highest efficiency of polymerization was observed for fullerene/Pd and fullerene/Rh films. In the case of fullerene/Pd films, the charge transfer processes related to the fullerene moieties reduction in negative potential range exhibit the best reversibility among all of the studied systems. Capacitance performances of C60/Pd and C70/Pd films deposited on the porous Au/quartz electrode were also compared. Capacitance properties of both films are significantly affected by the conditions of electropolymerization. Only a fraction of the film having a direct contact with solution contributes to pseudocapacitance. Capacitance properties of these films also depend on the size of cations of supporting electrolyte. The C70/Pd film exhibits much better capacitance performance comparison to C60/Pd polymer.  相似文献   

2.
The electrochemical behavior of C60-Pd polymer formed under electrochemical conditions and by the chemical synthesis was examined. In these polymers, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Both materials deposited at the electrode surface show electrochemical activity at negative potentials due to the reduction of fullerene cage. Electrochemically formed thin polymeric films exhibit much more reversible voltammetric response in comparison to chemically synthesized polymers. The morphology and electrochemical behavior of chemically synthesized C60-Pd polymer depend on the composition of grown solution. Chemical polymerization results in formation of large, ca. 50 μm, crystallic superficial structures that are composed of regular spherical particles with a diameter of 150 nm. The capacitance properties of C60-Pd films were investigated by cyclic voltammetry and faradaic impedance spectroscopy. Specific capacitance of chemically formed films depends on the conditions of film formation. The best capacitance properties was obtained for films containing 1:3 fullerene to Pd molar ratio. For these films, specific capacitance of 35 Fg?1 was obtained in acetonitrile containing (n-C4H9)4NClO4. This value is much lower in comparison to the specific capacitance of electrochemically formed C60-Pd film.  相似文献   

3.
Redox active films have been generated via electrochemical reduction in a solution containing palladium(II) acetate and fulleropyrrolidine with covalently linked crown ethers, viz., benzo-15-crown-5 and benzo-18-crown-6. In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Films show ability to coordinate alkali metal cations from the solution. Therefore, in solutions containing salts of alkali metal cations, benzo-15-crown-5-C60/Pd and benzo-18-crown-6-C60/Pd films are doped with cations coordinated by crown ether moiety and anions of supporting electrolyte which enter the film to balance positive charge. These films are electrochemically active in the negative potential range due to the reduction of the fullerene moiety. Reduction of the polymer is accompanied by the transport of supporting electrolyte ions between solution and solid phase. In solution containing alkali metal salts, the process of film reduction is accompanied by the transport of anions from the film to the solution. In the presence of tetra(alkyl)ammonium salts, transport of cations from the solution to the film takes place during the polymer reduction.  相似文献   

4.
《Electroanalysis》2006,18(9):841-848
Redox active films have been generated electrochemically by the reduction of dyads consisting of fullerene C60 covalently linked to zinc meso‐tetraphenyloporphyrin, ZnP? C60, and palladium acetate. The films are believed to consist of a polymeric network formed via covalent bonds between the palladium atoms and the fullerene moieties. In these films, the zinc porphyrin moiety is covalently linked to the polymeric chains through the pyrrolidine ring of the fullerene. The ZnP? C60/Pt films are electrochemically active in both positive and negative potential excursions. At positive potentials, two oxidation steps for the zinc porphyrin are observed. In the negative potential range, electron transfer processes involving the zinc porphyrin and the fullerene entities are observed. Film formation is also accompanied by palladium deposition on the electrode surface. The presence of a metallic phase in the film influences its morphology, structure and electrochemical properties.  相似文献   

5.
The recent results of investigations involving the electrochemical formation of polymers containing fullerenes and studies of their properties and applications are critically reviewed. From a structural point of view, these polymers can be divided into four main categories including (1) polymers with fullerenes physically incorporated into the foreign polymeric network without forming covalent bonds, (2) fullerene homopolymers formed via [2+2] cycloaddition, (3) “pearl necklace” polymers with fullerenes mutually linked covalently to form polymer chains, and (4) “charm bracelet” polymers containing pendant fullerene substituents. The methods of electrochemical polymerization of these systems are described and assessed. The structural features and properties of the electrochemically prepared polymers and their chemically synthesized analogs are compared. Polymer films containing fullerenes are electroactive in the negative potential range due to electroreduction of the fullerene moieties. Related films made with fullerenes derivatized with electron-donating moieties as building blocks are electroactive in both the negative and positive potential range. These can be regarded as “double cables” as they exhibit both p- and n-doping properties. Fullerene-based polymers may find numerous applications. For instance, they can be used as charge-storage and energy-converting materials for batteries and photoactive units of photovoltaic cell devices, respectively. They can be also used as substrates for electrochemical sensors and biosensors. Films of the C60/Pt and C60/Pd polymers containing metallic nano-particles of platinum and palladium, respectively, effectively catalyze the hydrogenation of olefins and acetylenes. Laser ablation of electrochemically formed C60/M and C70/M polymer films (M=Pt or Ir) results in fragmentation of the fullerenes leading to the formation of hetero-fullerenes, such as [C59M]+ and [C69M]+.Dedicated to Professor Dr. Alan M. Bond on the occasion of his 60th birthday.  相似文献   

6.
Nanocomposite carbonaceous-palladium (Nc-C-Pd) films were synthesized by physical vapor deposition method (PVD). Scanning electron microscopy studies showed that they were composed of carbonaceous matrix containing Pd nanograins. Nc-C-Pd films were also characterized by thermogravimetric analysis, X-ray powder diffraction, and Fourier transform infrared (FTIR) spectral analysis. The content of Pd in films synthesized at different PVD conditions was determined based on TG measurements. Technological parameters of PVD process affected C/Pd ratio. FTIR spectra exhibited characteristic absorption bands for the precursors of carbonaceous-palladium samples (fullerene C60 and palladium acetate). The influence of hydrogen on electrical properties of the films was tested by measuring their resistance in the presence of hydrogen (1% H2/N2).  相似文献   

7.
The zero-valent palladium in [Pd(C4H2N2)(C22H24N2)] is coordinated to two imine N atoms of a derivatized camphor ligand, and to the olefinic C atoms of a π-bonded fumaro­nitrile group. The N—Pd—N bite angle of 77.31 (9)° is similar to angles observed in other zero-valent palladium di­iminoalkene species. The asymmetry of the camphor moiety leads to two different orientations of the N-aryl groups relative to the PdN2 plane [C=N—C—C torsion angles of 102.4 (4) and 39.4 (4)°].  相似文献   

8.
The reduction of microcrystalline C60 fullerene, adhered at a carbon electrode and immersed in aqueous electrolyte, has been studied under various voltammetric conditions. This work reports mainly the voltammetric studies carried out principally in electrolyte containing potassium ions. Comparison of adherence techniques, such as solvent casting and mechanical transfer methods, are made to assess if the type of adhered techniques has any significant influence on the observed electrochemistry. The solvent casting method is found to produce three peaks in the potential for C600/n- redox couple as compared to a single and large peak produced when a mechanical transfer technique is employed. When the reduction potential of microcrystalline C60 in the presence of K+ is compared with other cations, such as Li, Na, Rb and Cs, it is observed that the shift of reduction potential follows the change in the hydration energy in the order Cs>Rb>K>Na>Li. In a mixed electrolyte study of CsCl/KCl, the reduction potential and peak shape of C600/n- redox couple during cyclic voltammetry is observed to change with concentration of the cations and the observed electrochemistry can be attributed to a cation-exchange mechanism. The reduction of C60 is irreversible in aqueous electrolyte containing alkaline cations as the re-oxidation process does not produce any observed electro-activity. Evidence of the formation of a passive coating of K n C60 fulleride, which does not appear to undergo dissolution is obtained under cyclic voltametric conditions. This coating remains electrochemically active in the presence of tetrabutylammonium ions in acetonitrile. Scan rate, chronocoulometric, and scanning electron microscopic studies provide evidence of the presence of a surface process involving solid–solid transformation.  相似文献   

9.
The crystallization of palladium in poly-3,4-ethylenedioxythiophene (PEDT) films is studied in order to obtain nanosized palladium clusters in PEDT composite layers with high electrocatalytic activity. Nucleation and growth of Pd is investigated for dependences on overpotential, polymer layer thickness d and chemical state (active or overoxidized) of the PEDT films. It is found that before the onset of diffusion limitations the growth occurs under charge transfer control. The observed induction period t0 indicates crystallization at the metal | polymer interface. The linear relation I1/3 versus t found in the initial stage of the deposition process gives evidence for three-dimensional growth of the metal crystals. The number N0 of sites active for nucleation decreases strongly with increasing d. A saturation in N0 is reached for continuous thicker films. The overoxidized layers are less active for metal deposition and exhibit a 50-fold lower number of active sites. The electrocatalytic properties of the Pd/PEDT composite layers are studied with respect to hydrogen sorption. High electrocatalytic activity is found for composites obtained with thin PEDT films polymerized in the low potential region.  相似文献   

10.
11.
The title compounds, {5‐(di­methyl­amino)‐2‐[N‐(4‐methoxy­phenyl)­imino­methyl]­phenyl}[N‐(4‐methoxy­phenyl)‐4‐nitro­salicyl­aldiminato]­palladium(II), [Pd(C14H11N2O4)(C16H17N2O)], (I), and [4‐(diethyl­amino)‐N‐(4‐methoxy­phenyl)­sali­cyl­aldiminato]{2‐[N‐(4‐methoxy­phenyl)­imino­methyl]‐5‐nitrophenyl}palladium(II) di­chloro­methane hemisolvate, [Pd(C14H11N2O3)(C18H21N2O2)]·0.5CH2Cl2, (II), both contain push–pull chromophores coordinated to Pd in a square‐planar arrangement. In both compounds, the five‐membered orthopalladated ring is essentially planar, while the coordinated six‐membered ring is not. Deviations from a coplanar arrangement of the phenyl­ene rings of the coordinated Schiff bases are observed in both (I) and (II) as a result of intramolecular steric interactions.  相似文献   

12.
Chitosan/palladium {CTS/Pd}n composite multilayer film was assembled based on layer‐by‐layer self‐assembly technique and in‐situ photo‐chemical reduction reaction, in which the CTS plays the role of a photo‐reduction agent and an assembly reagent. Transmission electron microscopy (TEM) shows that spherical Pd nanoparticles with diameter of 20 nm are well‐dispersed in the composite multilayer films, and the size of Pd nanoparticles increased gradually with the extension of illumination time. Besides, the {CTS/Pd}n composite multilayer film exhibits linear, uniform and regular layer‐by‐layer growth. Furthermore, the {CTS/Pd}n composite multilayer film presents an excellent catalytic properties for oxygen reduction, and it has potential application in energy, chemical synthesis and biological processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
An N‐heterocyclic carbene and phosphite synergistically enhanced Pd/C catalyst system has been developed for Suzuki coupling of aryl chlorides and aryl boronic acids from commercially available Pd/C with sterically demanding N,N′‐bis(2,6‐diisopropylphenyl)imidazolylidene and trimethylphosphite. A remarkable increase in catalytic activity of Pd/C was observed when used along with 1 equiv. N,N′‐bis(2,6‐diisopropylphenyl)imidazolium chloride and 2 equiv. phosphite with respect to palladium in appropriate solvents that were found to play a crucial role in Pd/C‐NHC‐P(OR)3‐catalyzed Suzuki coupling. A dramatic ortho‐substitution effect of carbonyl and nitrile groups in aryl chlorides was observed and explained by a modified quasi‐heterogeneous catalysis mechanism. The Pd/C catalyst could be easily recovered from reaction mixtures by simple filtration and only low palladium contamination was detected in the biparyl products. A practical process for the synthesis of 4‐biphenylcarbonitrile has therefore been developed using the N‐heterocyclic carbene/phosphite‐assisted Pd/C‐catalyzed Suzuki coupling. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The crystal and molecular structures of N‐benzoyl‐N′,N′‐dibutylselenourea (HL), C16H24N2OSe, and the corresponding complex bis(N‐benzoyl‐N′,N′‐dibutylselenoureato‐κ2Se,O)palladium(II), [Pd(C16H23N2OSe)2], are reported. The selenourea molecule is characterized by intermolecular hydrogen bonds between the selenoamidic H atom and the Se atom of a neighbouring molecule forming a dimer, presumably as a consequence of resonance‐assisted hydrogen bonding or π‐bonding co‐operativity. A second dimeric hydrogen bond is also described. In the palladium complex, the typical square‐planar coordination characteristic of such ligands results in a cis‐[Pd(LSe,O)2] complex.  相似文献   

15.
The electroreduction kinetics of Pd(Hgly)2Cl2 on rotating palladium disk electrode was studied by means of cyclic voltammetry. The double layer range of the palladium charging curve showed a single wave with the diffusion limited current I d, which yielded the diffusion coefficient of Pd(Hgly)2Cl2 complex D = 6 × 10−6 cm2/s. The plotted direct and reverse voltammetric curves were linearized in coordinates E, log[I/(I dI)]. The slope of this line gave b k factor evidencing the slow electrochemical step. When [Cl] decreased from 1 to 0.2 M, E 1/2 potential shifted to positive values. This was accounted for by reversible cleavage of Cl ion from Pd(Hgly)2Cl2 complexes before the irreversible electrochemical step. The pulse galvanostatic experiment resulted in the double electrical layer capacity and roughness factors f of electrolytic palladium deposits. The calculated values of f from 60 to 310 were attributed to adsorption of glycine particles on the electrodeposited palladium surface, which promotes to increasing number of palladium microcrystal growing centers.  相似文献   

16.
We have demonstrated a direct arylation polycondensation of 3,4‐ethylenedioxythiophene with 2,7‐dibromo‐9,9‐dioctylfluorene using palladium on carbon (Pd/C) as a catalyst. Pd/C is a low‐cost solid‐supported palladium catalyst, giving one of the effective catalytic systems for direct arylation. The Pd/C‐catalyzed direct arylation polycondensation with acetic acid/potassium carbonate in N,N‐dimethylacetamide furnished a high molecular weight π‐conjugated alternating copolymer of EDOT‐fluorene (Mn = 89,300, Mw/Mn = 3.27) in high yield. The polycondensation of EDOT with various dibromoarenes was also achieved, giving EDOT‐carbazole, EDOT‐dialylamine, and EDOT‐bithiophene polymers. Optical and electrochemical properties of the polymers were also discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1183–1188  相似文献   

17.
pH titration shows that 1 : 1 : 1 mixed-ligand complexes are formed in the systems palladium(II)-Cyt-Glu-H2O (loggB = 19.73) and palladium(II)-Cyt-Lys-H2O (logβ = 16.20). Complexes Pd(C5H5N5)(C5H8NO4)Cl, Pd(C5H5N5)(C6H13N2O2)Cl, Pd(C4H5N3O)(C6H13N2O2)Cl, and Pd(C4H5N3O)(C5H8NO4)Cl are synthesized and characterized by chemical analysis, X-ray powder diffraction, and thermogravimetry. The coordination mode of amino acids, cytosine, and adenine to the palladium(II) ion is determined.  相似文献   

18.
A new oligomer of N,N′-bis(2-pyrrolyl methylene)-3,4-dicyano-2,5-diaminothiophene possessing cyano-substituted thiophene and pyrrole residues linked together by azomethine groups was used for the electrochemical polymerisation of conducting films. The approach used for the oligomer design favours inter-chain interactions through hydrogen bonding and negative charge stability through the cyano substitute thiophene. The oligomer was successfully electropolymerised at 0.67 V vs Ag+/Ag from 0.1M tetrabutylammonium tetrafluoroborate (TBABF4)/acetonitrile as a dark blue film on the surface of platinum electrodes. Cyclic voltammetry has been used to investigate the redox behaviour of the films. The electrically conducting polymer showed p-doping/neutralisation behaviour. The effect of different electrolytes such as TBABF4, tetrabutylammonium perchlorate (TBAClO4), lithium perchlorate (LiClO4) and sodium perchlorate (NaClO4) on the redox switching and the stability of the polymer films was investigated. Infrared and UV-vis spectra of oligomer and polymers are presented. The evolution of the film growing process is shown by UV-vis spectroscopy.  相似文献   

19.
Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of ascorbic acid (AA) on palladium coated nanoporous gold film (PdNPGF) electrode. The deposition of palladium was done through oxidation of copper UPD layer by palladium ions. This low Pd‐loading electrode behaved as the nanostructured Pd for electrocatalytic reaction. The PdNPGF electrode exhibits excellent electrocatalytic behavior by enhancing the AA oxidation peak current due to synergistic influence of the Pd film and NPGF. The kinetic parameters such as electron transfer coefficient, α, was 0.47 and the voltammetric responses of the PdNPGF electrode were linear against concentration of AA in the ranges of 2.50–33.75 mM and 0.10–0.50 mM with CV and DPV respectively.  相似文献   

20.
Three new palladium complexes containing a difunctional P,N‐chelate, namely tris­(chloro­{[1‐methyl‐1‐(6‐methyl‐2‐pyridyl)ethoxy]diphenylphospine‐κ2N,P}methyl­palladium(II)chloro­form solvate, 3[Pd(CH3)Cl(C21H22NOP)]·CHCl3, (III), dichloro­[2‐(2,6‐dimethyl­phen­yl)‐6‐(diphenyl­phosphinometh­yl)­pyridine‐κ2N,P]palladium(II), [PdCl2(C26H24NP)], (IV), and chloro­[2‐(2,6‐dimethyl­phen­yl)‐6‐(diphenyl­phos­phino­meth­yl)pyridine‐κ2N,P]methyl­palladium(II), [Pd(CH3)Cl(C26H24NP)], (V), are reported. Geometric data and the conformations of the ligands around the metal centers, as well as slight distortions of the Pd coordination environments from idealized square‐planar geometry, are discussed and compared with the situations in related compounds. Non‐conventional hydrogen‐bond inter­actions (C—H⋯Cl) have been found in all three complexes. Compound (III) is the first six‐membered chloro–meth­yl–phosphinite P,N‐type PdII complex to be structurally characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号