首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Transition metal selenides attract significant attention as advanced anode materials for sodium-ion batteries(SIBs) in recent years due to their appropriate working potential and high theoretic capacity. However, the poor structural stability and rate capability limit their further practical applications. Herein,zeolite imidazole framework-8/zeolite imidazole framework-67 is used as a template to prepare Co0.85Se and Zn Se nanoparticles embed in N-doped carbon matrix successfully, and...  相似文献   

2.
Superstructures have attracted great interest owing to their potential applications. Herein, we report the first scalable preparation of a porous nickel-foam-templated superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles. Uniform two-dimensional (2D) Co-metal organic framework (MOF) nanosheets (Co-MNS) grow on nickel foam, followed by a MOF-mediated tandem (carbonization/phosphidation) pyrolysis. The resulting superstructure has a porous 3D interconnected network with well-arranged 2D carbon nanosheets on it, in which ultrafine cobalt phosphide nanoparticles are tightly immobilized. A single piece of this superstructure can be directly used as a self-supported electrode for electrocatalysis without any binders. This “one-piece” porous superstructure with excellent mass transport and electron transport properties, and catalytically active cobalt phosphide nanoparticles with ultrasmall size (3–4 nm), shows excellent trifunctional electrocatalytic activities for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR), achieving great performances in water splitting and Zn–air batteries.  相似文献   

3.
Metal selenides are promising anodes for sodium-ion batteries (SIBs) due to the high theoretical capacity through conversion reaction mechanism. However, developing metal selenides with superior electrochemical sodium-ion storage performance is still a great challenge. In this work, a novel composite material of free-standing NiSe2 nanoparticles encapsulated in N-doped TiN/carbon composite nanofibers with carbon nanotubes (CNTs) in-situ grown on the surface (NiSe2@N-TCF/CNTs) is prepared by electrospinning and pyrolysis technique. In this composite materials, NiSe2 nanoparticles on the surface of carbon nanofibers were encapsulated into CNTs, thus avoiding aggregation. The in-situ grown CNTs not only improve the conductivity but also act as a buffer to accommodate the volume expansion. TiN inside the nanofibers further enhances the conductivity and structural stability of carbon-based nanofibers. When directly used as anode for SIBs, the NiSe2@N-TCF/CNT electrode delivered a reversible capacity of 392.1 mAh/g after 1000 cycles and still maintained 334.4 mAh/g even at a high rate of 2 A/g. The excellent sodium-ion storage performance can be attributed to the fast Na+ diffusion and transfer rate and the pseudocapacitance dominated charge storage mechanism, as is evidenced by kinetic analysis. The work provides a novel approach to the fabrication of high-performance anode materials for other batteries.  相似文献   

4.
ZnSe, as a promising electrode material for sodium storage, has a high theoretical capacity, low cost, and excellent physicochemical properties. The poor reaction kinetics and huge volume variation of ZnSe hinder its practical applications. Therefore, in this study, ZnSe electrode materials embedded in carbon nanofibers (ZnSe@NC@NCNFs) were synthesized through electrospinning and selenization using a Zn-based metal-organic framework (Zn-MOF) precursor. During the calcination process, the MOF-derived porous N-doped carbon layer wraps the ZnSe nanoparticles, and the one-dimensional (1D) carbon nanofiber forms a second N-doped carbon protective layer. The interwoven nanofibers can be severed as a freestanding electrode for sodium storage without conductive and binder agents. In situ X-ray diffraction (XRD) demonstrates the formation of irreversible NaZn13 during the initial discharge process, which can act as sodiophilic sites and buffering matrices for subsequent Na+ insertion/extraction. The ZnSe@NC@NCNFs exhibit significant electrochemical performance for sodium storage with high reversible capacity and desired rate performance.  相似文献   

5.
Two-dimensional (2D) porous carbon nanosheets (2DPCs) have attracted great attention for their good porosity and long-distance conductivity. Factors such as templates, precursors, and carbonization–activation methods, directly determine their performance. However, rational design and preparation of porous carbon materials with controlled 2D morphology and heteroatom dopants remains a challenge. Therefore, an ionic polyimide with both sp2- and sp3-hybridized nitrogen atoms was prepared as a precursor for fabricating N-doped hexagonal porous carbon nanosheets through a hard-template approach. Because of the large surface area and efficient charge-mass transport, the resulting activated 2D porous carbon nanosheets (2DPCs-a) displayed promising electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline and acidic media, such as ultralow half-wave potential (0.83 vs. 0.84 V of Pt/C) and superior limiting current density (5.42 vs. 5.14 mA cm−2 of Pt/C). As air cathodes in Zn–air batteries, the as-developed 2DPCs-a exhibited long stability and high capacity (up to 614 mA h g−1), which are both higher than those of commercial Pt/C. This work provides a convenient method for controllable and scalable 2DPCs fabrication as well as new opportunities to develop high-efficiency electrocatalysts for ORR and Zn–air batteries.  相似文献   

6.
《中国化学快报》2020,31(9):2230-2234
Tailored design and synthesis of high-quality electrocatalysts is vital for the advancement of oxygen evolution reaction (OER). Herein, we report a powerful puffing method to fabricate hierarchical porous N-doped carbon with numerous embedded Ni nanoparticles. Interestingly, during the puffing and annealing process, rice precursor with N and Ni sources can be in-situ converted into Ni-embedded N-doped porous carbon (N-PC/Ni) composite. The obtained N-PC/Ni composite possesses a cross-linked porous architecture containing conductive carbon backbone and active Ni nanoparticles electrocatalysts for OER. The pore formation in N-PC/Ni composite is also proposed because of carbothermic reduction. The N-PC/Ni composite is fully studied as electrocatalysts for OER. Due to increased active surface area, enhanced electronic conductivity and reactivity, the designed N-PC/Ni composite exhibits superior OER performance with a low Tafel slope (∼88 mV/dec) and a low overpotential as well as excellent long-term stability in alkaline solution. Our proposed rational design strategy may provide a new way to construct other advanced metal/heteroatom-doped composites for widespread application in electrocatalysis.  相似文献   

7.
钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g.  相似文献   

8.
As a promising energy-storage device,the hybrid lithium-ion capacitor coupling with both a large energy density battery-type anode and a high power density capacitor-type cathode is attracting great attention.For the sake of improving the energy density of hybrid lithium-ion capacitor,the free-standing anodes with good electrochemical performance are essential.Herein,we design an effective electrospinning strategy to prepare free-standing MnS/Co_4S_3/Ni_3S_2/Ni/C-nanofibers(TMSs/Ni/C-NFs)film and firstly use it as a binder-free anode for hybrid lithium-ion capacitor.We find that the carbon nanofibers can availably prevent MnS/Co_4S_3/Ni_3S_2/Ni nanoparticles from aggregation as well as significantly improve the electrochemical performance.Therefore,the binder-free TMSs/Ni/C-NFs membrane displays an ultrahigh reversible capacity of 1246.9 m Ah g~(-1)at 100 m A g~(-1),excellent rate capability(398 mAh g~(-1) at2000 mA g~(-1)),and long-term cyclic endurance.Besides,we further assemble the hybrid lithium-ion capacitor,which exhibits a high energy density of 182.0 Wh kg~(-1)at 121.1 W kg~(-1)(19.0 Wh kg~(-1) at 3512.5 W kg~(-1))and remarkable cycle life.  相似文献   

9.
由于具有高安全性和优异的循环稳定性,二氧化钛(TiO2)作为负极材料被广泛地应用于锂离子电池领域。但是较差的导电性和离子传输速率限制了TiO2的进一步应用和发展。鉴于此,我们以花状NH2-MIL-125 (Ti)为前驱体和硬模板,成功合成出了具有花状结构的超细纳米TiO2/多孔氮掺杂碳片(N-doped porous carbon)复合物(记为FL-TiO2/NPC)。过程中所制备的纳米TiO2-金属有机构架(Ti-MOF)展现出由二维褶皱多孔纳米片堆积、组装而成的花状结构。一方面,二维褶皱纳米片包含TiO2纳米颗粒可以增大活性物质与电解液的接触面积;另一方面,氮掺杂多孔碳基体可以提高整体复合物的导电性和结构完整性。将所获得的FL-TiO2/NPC作为负极组装成的锂半电池, 在0.5 A·g-1、300圈后仍有384.2 mAh·g-1以及在1 A·g-1、500圈仍有279.1 mAh·g-1的比容量。进一步性能测试表明,在2 A·g-1、2000圈长循环测试后,其仍能保持256.5 mAh·g-1的比容量和接近100%的库伦效率。该优异的电化学活性和稳定性主要起源于材料独特的花状结构。我们的合成策略为今后制备高储锂性能的金属氧化物/多孔氮掺杂碳负极提供了一种新的思路。  相似文献   

10.
本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料. 该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成. 将其作为活性材料应用在钠离子电池中,该材料展现出优异的循环稳定性,当以100 mA·g-1的电流密度循环至200圈时,该材料的库仑效率保持在99.3%. 进一步通过对不同电位下Ni1.2Co0.8P@N-C材料中的氮掺杂碳进行原位拉曼光谱测试,结果显示钠离子在氮掺杂的碳壳中的脱嵌行为具有较大程度的可逆性,研究结果对钠离子电池充放电过程的后续电化学研究提供了有价值的信息.  相似文献   

11.
Porous carbon spheres represent an ideal family of electrode materials forsupercapacitors because of the high surface area,ideal conductivity,negligible aggregation,and ability to achieve space efficient packing.However,the development of new synthetic methods towards porous carbon spheres still remains a great challenge.Herein,N-doped hollow carbon spheres with an ultrahigh surface area of2044 m2/g have been designed based on the phenylenediamine-formaldehyde chemistry.When applied in symmetric supercapacitors with ionic electrolyte(EMIBF_4),the obtained N-doped hollow carbon spheres demonstrate a high capacitance of 234 F/g,affording an ultrahigh energy density of 114.8 Wh/kg.Excellent cycling stability has also been achieved.The impressive capacitive performances make the phenylenediamine-formaldehyde resin derived N-doped carbon a promising candidate electrode material for supercapacitors.  相似文献   

12.
采用一步固相煅烧工艺制备了碳纳米管原位封装Ni3S2纳米颗粒(Ni3S2@CNT),并研究了其作为钠离子电池(SIBs)负极材料的电化学性能. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安测试、恒流充放电以及交流阻抗等研究了Ni3S2@CNT的物相结构、形貌特征以及电化学性能. 电化学测试表明,材料在100 mA·g -1电流密度下,放电容量可以达到541.6 mAh·g -1,甚至在2000 mA·g -1的大电流密度下其放电比容量也可以维持在274.5 mAh·g -1. 另外,材料在100 mA·g -1电流密度下,经过120周充放电循环后其放电和充电比容量仍然可以保持在374.5 mAh·g -1和359.3 mAh·g -1,说明其具有良好倍率性能和循环稳定性能. 良好的电化学性能归因于这种独特的碳纳米管原位封装Ni3S2纳米颗粒结构. 碳纳米管不但可以提高复合材料的导电性,也可以缓冲Ni3S2纳米颗粒在反复充放电过程中产生的体积膨胀效应,明显改善了Ni3S2@CNT负极复合材料的电化学性能.  相似文献   

13.
《Journal of Energy Chemistry》2017,26(6):1217-1222
Developing high-performance noble metal-free and free-standing catalytic electrodes are crucial for overall water splitting. Here, nickel sulfide(Ni_3S_2) and nickel selenide(Ni Se) are synthesized on nickel foam(NF) with a one-pot solvothermal method and directly used as free-standing electrodes for efficiently catalyzing hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline solution.In virtue of abundant active sites, the Ni_3S_2/NF and the NiS e/NF electrodes can deliver a current density of 10 m A cm~(-2) at only 123 m V, 137 m V for HER and 222 m V, 271 m V for OER. Both of the hierarchical Ni_3S_2/NF and Ni Se/NF electrodes can serve as anodes and cathodes in electrocatalytic overall watersplitting and can achieve a current density of 10 m A cm~(-2) with an applied voltage of ~1.59 V and 1.69 V,respectively. The performance of as-obtained Ni_3S_2/NF||Ni_3S_2/NF is even close to that of the noble metalbased Pt/C/NF||IrO_2/NF system.  相似文献   

14.
Developing high-performance anode materials for potassium-ion batteries is significantly urgent. We here demonstrate Sb_2S_3 nanoparticles(~20 nm) homogeneously dispersed in porous S,N-codoped graphene framework(Sb_2S_3-SNG) as a self-supported anode material for potassium-ion batteries. The rational structure design of integrating Sb_2S_3 nanoparticles with S,N-codoped graphene contributes to high reactivity, strong affinity, good electric conductivity, and robust stability of the composite, enabling superior K-storage performance. Moreover, the self-supported architecture significantly decreases the inactive weight of the battery, resulting in a high energy density of a Sb_2S_3-SNG/KVPO_4 F-C full cell to ~166.3 W h kg~(-1).  相似文献   

15.
Nanostructured iron sulfides are regarded as a potential anode material for sodium-ion batteries in virtue of the rich natural abundance and remarkable theoretical capacity.However,poor rate performance and inferior cycling stability caused by sluggish kinetics and volume swelling represent two main obstacles at present. The previous research mainly focuses on nanostructure design and/or hybridizing with conductive materials.Further boosting the property by adjusting Fe/S atomic ratio in iron sulfides is rarely reported.In this work,Fe_7 S_8 and FeS_2 encapsulated in N-doped hollow carbon fibers(NHCFs/Fe_7 S_8 and NHCFs/FeS_2) are constructed by a combined chemical bath deposition and subsequent sulfidation treatment.The well-designed NHCFs/Fe7 S8 electrode displays a remarkable capacity of 517 mAh g-1 at 2 A g-1after 1000 cycles and a superb rate capability with a capability of 444 mAh g-1 even at 20 A g-1 in etherbased electrolyte.Additionally,the rate capability of NHCFs/Fe7 S8 is superior to that of the contrast NHCFs/FeS2 electrode and also much better than the values of the most previously reported iron sulfide-based anodes.The in-depth mechanism explanation is explained by further experimental analysis and theoretical calculation,revealing Fe7 S8 displays improved intrinsic electronic conductivity and faster Na+ diffusion coefficient as well as higher reaction reversibility.  相似文献   

16.
Owing to excellent conductivity and abundant surface terminals,MXene-based heterostructures have been intensively investigated as energy storage materials.However,elaborate design of the structure and composition of MXene-based hybrids towards superior electrochemical performance is still challenging.Herein,we present an ingenious leaf-inspired design for preparing a unique Sb_2S_3/nitrogen-doped Ti_3C_2T_x MXene (L-Sb_2S_3/Ti_3C_2) hybrid.In-situ TEM observations reveal that the leaflike Sb_2S_3 nanoparticles with numerous mesopores can well relieve the large volume changes via an inward pore filling mechanism with only 20%outward expansion,whereas highly conductive N-doped Ti_3C_2T_x nanosheets can serve as the robust mechanical support to reinforce the structural integrity of the hybrid.Benefiting from the structural and constituent merits,the L-Sb_2S_3/Ti_3C_2anode fabricated exhibits a fast sodium storage behavior in terms of outstanding rate capability (339.5 mA h g~(-1)at 2,000 mA g~(-1)) and high reversible capacity at high current density (358.2 mA h g~(-1)at 1,000 mA g~(-1)after 100 cycles).Electrochemical kinetic tests and theoretical simulation further manifest that the boosted electrochemical performance mainly arises from such a unique leaf-like Sb_2S_3 mesoporous nanostructure with abundant active sites,and enhanced Na~+ adsorption energy on the heterojunction formed between Sb_2S_3 nanoparticles and Ti_3C_2 matrix.  相似文献   

17.
The Fe-based transition metal oxides are promising anode candidates for lithium storage considering their high specific capacity, low cost, and environmental compatibility. However, the poor electron/ion conductivity and significant volume stress limit their cycle and rate performances. Furthermore, the phenomena of capacity rise and sudden decay for α-Fe2O3 have appeared in most reports. Here, a uniform micro/nano α-Fe2O3 nanoaggregate conformably enclosed in an ultrathin N-doped carbon network (denoted as M/N-α-Fe2O3@NC) is designed. The M/N porous balls combine the merits of secondary nanoparticles to shorten the Li+ transportation pathways as well as alleviating volume expansion, and primary microballs to stabilize the electrode/electrolyte interface. Furthermore, the ultrathin carbon shell favors fast electron transfer and protects the electrode from electrolyte corrosion. Therefore, the M/N-α-Fe2O3@NC electrode delivers an excellent reversible capacity of 901 mA h g−1 with capacity retention up to 94.0 % after 200 cycles at 0.2 A g−1. Notably, the capacity rise does not happen during cycling. Moreover, the lithium storage mechanism is elucidated by ex situ XRD and HRTEM experiments. It is verified that the reversible phase transformation of α↔γ occurs during the first cycle, whereas only the α-Fe2O3 phase is reversibly transformed during subsequent cycles. This study offers a simple and scalable strategy for the practical application of high-performance Fe2O3 electrodes.  相似文献   

18.
数十年来,碳气凝胶因其在催化剂载体、电容器和锂电池电极材料以及吸附剂等领域的潜在应用而备受关注.然而,传统碳气凝胶的制备往往使用昂贵且有毒的前驱体,其方法也较为复杂,不利于大规模生产及应用.本文介绍了一种以细菌纤维素为前驱体制备氮掺杂碳纤维气凝胶的方法.该方法廉价高效,简单易行且对环境无害.所制气凝胶具有密度低、孔隙度高、比表面积大以及导电性良好等优点.它继承了细菌纤维素生物质优异的三维交联多孔结构的特点,可直接用作氧还原催化剂,表现出优异的催化性能,预示着其广泛的应用前景.这在该领域的应用报道尚属首次.  相似文献   

19.
High-perfo rmance anodes of sodium ion batteries(SIBs)largely depends on rational architecture design and binder-free smart hybridization.Herein,we report TiC/C core/shell nanowires arrays prepared by a one-step chemical vapor deposition(CVD)method and apply it as the anode of SIBs for the first time.The conductive TiC core is intimately decorated with carbon shell.The as-obtained TiC/C nanowires are homogeneously grown on the substrate and show core/shell heterostructure and porous architecture with high electronic conductivity and reinforced stability.Owing to these merits,the TiC/C electrode displays good rate performance and outstanding cycling performance with a capacity of 135.3 mAh/g at 0.1 A/g and superior capacity retention of 90.14%after 1000 cycles at 2 A/g.The reported strategy would provide a promising way to construct binder-free arrays electrodes for sodium ion storage.  相似文献   

20.
Sodium‐ion batteries (SIBs) based on flexible electrode materials are being investigated recently for improving sluggish kinetics and developing energy density. Transition metal selenides present excellent conductivity and high capacity; nevertheless, their low conductivity and serious volume expansion raise challenging issues of inferior lifespan and capacity fading. Herein, an in‐situ construction method through carbonization and selenide synergistic effect is skillfully designed to synthesize a flexible electrode of bone‐like CoSe2 nano‐thorn coated on porous carbon cloth. The designed flexible CoSe2 electrode with stable structural feature displays enhanced Na‐ion storage capabilities with good rate performance and outstanding cycling stability. As expected, the designed SIBs with flexible BL?CoSe2/PCC electrode display excellent reversible capacity with 360.7 mAh g?1 after 180 cycles at a current density of 0.1 A g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号