首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal–organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well‐defined hollow Zn/Co‐based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn‐MOF (ZIF‐8) on preformed Co‐MOF (ZIF‐67) nanocrystals that involve in situ self‐sacrifice/excavation of the Co‐MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co‐ZIF shells to generate yolk–shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co‐ZIF with dominance of the Zn‐MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  相似文献   

2.
Zeolite imidazolate frameworks (ZIFs) have recently emerged as an ideal type of carbon precursors with abundant tailorability. In this work, a series of ZIF‐derived porous carbon catalysts have been prepared with encapsulation of bimetallic oxide nanoparticles via simple thermal treatment. The composition and structure of these catalysts were confirmed in detail by different characterization methods. The bimetallic oxide (Mn/Co, Fe/Co, and Cu/Co) nanoparticles were encapsulated in the nitrogen‐doped graphitized carbon matrix. Moreover, the hierarchically porous structure and carbon defects were successfully constructed in the carbon catalysts. Additionally, in the selective oxidation of saturated C–H bonds in alkyl arenes, the carbon catalysts demonstrate outstanding performance for the oxidation of C–H bonds to corresponding carboxyl groups. This was due to their unique structure can greatly promote mass transfer and molecular oxygen activation, resulting in high conversion and high selectivity. Remarkably, this work here could also provide a novel strategy to the controllable synthesis of metal–organic frameworks (MOFs)‐derived carbon catalysts for enhanced performance in heterogeneous catalysis.  相似文献   

3.
A chiral zeolitic imidazolate framework (ZIF) showing circularly polarized luminescence (CPL) has been successfully constructed by blending binapthyl‐derived chiral emitters with ZIF‐8 rhombic dodecahedron nanoparticles. This approach solves a major trade‐off in CPL‐active materials: the large luminescence dissymmetry factor (glum) always suffers from suppression of luminescence efficiency. Compared to the optical properties of chiral emitters, the obtained chiral ZIF nanomaterials showed an enhanced fluorescence efficiency while the |glum| value is significantly amplified by one order of magnitude. Additionally, enantioselective fluorescence sensing in response to α‐hydroxycarboxylic acids has been enhanced in chiral ZIFs. Reorganization and conjunction of chiral emitters to the skeleton of ZIF nanoparticles can greatly improve both the luminescence quantum yield and circularly polarization, which facilitates the design of more efficient chiroptical materials.  相似文献   

4.
The efficient chemical conversion of carbon dioxide (CO2) into value‐added fine chemicals is an intriguing but challenging route in sustainable chemistry. Herein, a hollow‐structured bimetallic zeolitic imidazole framework composed of Zn and Co as metal centers (H‐ZnCo‐ZIF) has been successfully prepared via a post‐synthetic strategy based on controllable chemical‐etching of the preformed solid ZnCo‐ZIF in tannic acid. The creation of hollow cavities inside each monocrystalline ZIFs could be achieved without destroying the intrinsic frameworks, as characterized by field‐emission scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction technologies. The as‐synthesized H‐ZnCo‐ZIF exhibited remarkable catalytic activity in the cycloaddition of CO2 with epoxides to the corresponding cyclic carbonates, outperforming the solid ZnCo‐ZIF analogue due to the improved mass transfer originating from the hollow structure. More importantly, due to stabilization of metal centers in the ZIF framework by the tannic acid shell, H‐ZnCo‐ZIF exhibited good recyclability, and no activity loss could be observed in six runs. The present study provides a simple and effective strategy to enhance the catalytic performance of ZIFs by creating a hollow structure via chemical etching.  相似文献   

5.
A series of dual‐metal zeolitic imidazolate framework (ZIF) crystals with SOD and RHO topologies was synthesised by metal substitution from ZIF‐108 (Zn(2‐nitroimidazolate)2, SOD topology) as the parent material. This was based on the concept that metal substitution of ZIF‐108 requires a much lower activation energy than homogenous nucleation owing to the metastability of ZIF‐108. In‐depth investigations of the formation processes of the daughter ZIFs indicated that the transformation of ZIF‐108 is a dissolution/heterogeneous nucleation process. Typical isostructural Co2+ substitution mainly occurs at the outer surface of ZIF‐108 and results in a core–shell structure. On the contrary, the Cu2+‐substituted ZIF has a RHO topology with a homogeneous distribution of Cu2+ ions in the structure. Substitution with Ni2+ resulted in a remarkable enhancement in adsorption selectivity toward CO2 over N2 by a factor of up to 227. With Co2+‐substituted nanoparticles as inorganic filler, a mixed matrix membrane based on polysulfone displayed greatly improved performance in the separation of H2/CH4, CO2/N2 and CO2/CH4.  相似文献   

6.
Cu nanoparticle‐connected ZIF‐8/reduced graphite oxide (RGO) composite was successfully prepared through a facile hydrothermal reaction using sulfate in this paper. The crossover mechanism of metal nanoparticles loading and RGO decoration to enhance the photocatalytic efficiency of pristine ZIF‐8 was studied. The results showed that the prepared Cu‐S@ZIF‐8/RGO has a strong ability to take advantage of sunlight, indicating an appreciable application prospect. RGO can act as a base to support the whole structure and serve as an electron sink to accept photoexcited electrons, realizing the formation of reactive oxygen species (ROS) and inhibition of electron–hole pair recombination. Cu nanoparticles act as connectors between ZIF‐8 and RGO to transfer electrons and realize the formation of partial ROS on its surface. The doped sulfate radical can promote to extend the utilization of the wavelength range by generating surface states. Cu‐S@ZIF‐8/RGO showed the best photocatalytic activity in simulated sunlight for eliminating rhodamine B and 4‐chlorophenol among all the prepared samples, the structure kept intact even in the presence of different kinds of anions. The crossover study of metal loading and RGO decoration can develop a new way for only UV‐responsive metal–organic frameworks to remove organic contaminants under sunlight irradiation.  相似文献   

7.
The facile synthesis of a porous carbon material that is doped with iron‐coordinated nitrogen active sites (FeNC‐70) is demonstrated by following an inexpensive synthetic pathway with a zeolitic imidazolate framework (ZIF‐70) as a template. To emphasize the possibility of tuning the porosity and surface area of the resulting carbon materials based on the structure of the parent ZIF, two other ZIFs, that is, ZIF‐68 and ZIF‐69, are also synthesized. The resulting active carbon material that is derived from ZIF‐70, that is, FeNC‐70, exhibits the highest BET surface area of 262 m2 g?1 compared to the active carbon materials that are derived from ZIF‐68 and ZIF‐69. The HR‐TEM images of FeNC‐70 show that the carbon particles have a bimodal structure that is composed of a spherical macroscopic pore (about 200 nm) and a mesoporous shell. X‐ray photoelectron spectroscopy (XPS) reveals the presence of Fe‐N‐C moieties, which are the primary active sites for the oxygen‐reduction reaction (ORR). Quantitative estimation by using EDAX analysis reveals a nitrogen content of 14.5 wt. %, along with trace amounts of iron (0.1 wt. %), in the active FeNC‐70 catalyst. This active porous carbon material, which is enriched with Fe‐N‐C moieties, reduces the oxygen molecule with an onset potential at 0.80 V versus NHE through a pathway that involves 3.3–3.8 e? under acidic conditions, which is much closer to the favored 4 e? pathway for the ORR. The onset potential of FeNC‐70 is significantly higher than those of its counterparts (FeNC‐68 and FeNC‐69) and of other reported systems. The FeNC‐based systems also exhibit much‐higher tolerance towards MeOH oxidation and electrochemical stability during an accelerated durability test (ADT). Electrochemical analysis and structural characterizations predict that the active sites for the ORR are most likely to be the in situ generated N? FeN2+2/C moieties, which are distributed along the carbon framework.  相似文献   

8.
Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co(3)O(4) nanoparticles, a manganese-cobalt spinel MnCo(2)O(4)/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near-edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrids results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitution of Co(3+) sites by Mn(3+), which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared with the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physical mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo(2)O(4)/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with stability superior to Pt/C in alkaline solutions.  相似文献   

9.
A series of spray dried zeolitic imidazolate frameworks (ZIFs = ZIF‐8, ZIF‐67, and Zn/Co‐ZIF) are used as a catalyst for the bulk ring‐opening polymerization of δ‐valerolactone without any co‐catalyst to generate polyvalerolactone. Interestingly, using the same catalyst under the same reaction conditions could manipulate the structure of the product polymer, and thus its physical properties. Thus, using a dried substrate leads to the formation of the cyclic polymer while a linear polymer was formed on using the commercially available substrate. An activated monomer mechanism has been suggested where the propagating zinc alkoxide undergoes an intramolecular transesterification to release cyclic or linear polyvalerolactone. The ROP of δ‐VL without drying shows that the polymeric zwitterions have little tendency to cyclize in the presence of moisture. At 140 °C, ZIF‐8 shows a superior catalytic activity resulting in the production of cyclic polyvalerolactone having a high molecular weight as compared to ZIF‐67 or Zn/Co‐ZIF due to the presence of highly active sites. The catalyst could be recycled and reused without any significant loss of catalytic activity.  相似文献   

10.
电催化制氢是解决当前能源危机的重要手段之一。 研究高效稳定的非贵金属电催化剂是电催化制氢商业应用的重点。 本文通过直接高温热解双金属沸石咪唑骨架,制备了一种氮掺杂石墨炭(NC)包覆均匀分布的钴纳米颗粒电催化剂(V-Co@NC,这里V是vacancy缩写),前躯体中的Zn元素有效地防止钴纳米颗粒的聚集,并有助于生成均匀分布的钴纳米颗粒。 这种特殊的纳米结构可防止钴与电解液的直接接触,提升了其循环稳定性,同时,氮元素的掺杂提升了导电性,有利于电催化制氢性能的提升。 结果表明,所制备的V-Co@NC催化剂在酸性和碱性电解液中均具有良好的催化性能,且经过5000次循环测试后催化活性基本保持不变,具有良好的应用前景。为高活性和高选择性的电催化制氢催化剂的发展提供一种全新的途径。  相似文献   

11.
A new zeolitic–imidazolate framework (ZIF), [Zn(imidazolate)2?x(benzimidazolate)x], that has the zeolite A (LTA) framework topology and contains relatively inexpensive organic linkers has been revealed using in situ atomic force microscopy. The new material was grown on the structure‐directing surface of [Zn(imidazolate)1.5(5‐chlorobenzimidazolate)0.5] (ZIF‐76) crystals, a metal–organic framework (MOF) that also possesses the LTA framework topology. The crystal growth processes for both [Zn(imidazolate)2?x(benzimidazolate)x] and ZIF‐76 were observed using in situ atomic force microscopy; it is the first time the growth process of a nanoporous material with the complex zeolite A (LTA) framework topology has been monitored temporally at the nanoscale. The results reveal the crystal growth mechanisms and possible surface terminations on the {100} and {111} facets of the materials under low supersaturation conditions. Surface growth of these structurally complex materials was found to proceed through both “birth‐and‐spread” and spiral crystal‐growth mechanisms, with the former occurring through the nucleation and spreading of metastable and stable sub‐layers reliant on the presence of non‐framework species to bridge the framework during formation. These results support the notion that the latter process may be a general mechanism of surface crystal growth applicable to numerous crystalline nanoporous materials of differing complexity and demonstrate that the methodology of seeded crystal growth can be used to discover previously unobtainable ZIFs and MOFs with desirable framework compositions.  相似文献   

12.
Controlling the shape of metal–organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post‐synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein, we report using a simple wet‐chemistry process at room temperature to control the anisotropic etching of colloidal ZIF‐8 and ZIF‐67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, by an acid–base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal–ligand bonds; that, along these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution.  相似文献   

13.
Fe3O4/ZIF‐8 nanoparticles were synthesized through a room‐temperature reaction between 2‐methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as‐prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m2g?1). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF‐8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity.  相似文献   

14.
The adsorption of Co2+ ions from nitrate solutions using iron oxide nanoparticles of magnetite (Fe3O4) and maghemite (gamma-Fe2O3) has been studied. The adsorption of Co2+ ions on the surface of the particles was investigated under different conditions of oxide content, contact time, solution pH, and initial Co2+ ion concentration. It has been found that the equilibrium can be attained in less than 5 min. The maximum loading capacity of Fe3O4 and gamma-Fe2O3 nanoparticles is 5.8 x 10(-5) and 3.7 x 10(-5) mol m(-2), respectively, which are much higher than the previously studied, iron oxides and conventional ion exchange resins. Co2+ ions were also recovered by dilute nitric acid from the loaded gamma-Fe2O3 and Fe3O4 with an efficiency of 86 and 30%, respectively. That has been explained by the different mechanisms by including both the surface and structural loadings of Co2+ ions. The surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles has been found to have the same mechanism of ion exchange reaction between Co2+ in the solution and proton bonded on the particle surface. The conditional equilibrium constants of surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles have been determined to be log K=-3.3+/-0.3 and -3.1+/-0.2, respectively. The structural loading of Co2+ ions into Fe3O4 lattice has been found to be the ion exchange reaction between Co2+ and Fe2+ while that into gamma-Fe2O3 lattice to fill its vacancy. The effect of temperature on the adsorption of Co2+ was also investigated, and the value of enthalpy change was determined to be 19 kJ mol(-1).  相似文献   

15.
Amorphous zeolitic imidazolate frameworks (ZIFs) offer promising applications as novel functional materials. Herein, amorphization of ZIF‐L through scanning‐electron‐beam exposure is demonstrated, based on amorphization of individual ZIF‐L crystals. The amorphized ZIF product has drastically increased stability against dissolution in water. An electron dose that allows for complete preservation of amorphous particles after immersion in water is established, resulting in new shapes of amorphous ZIF‐L with spatial control at the sub‐micrometer length scale. Changed water stability as a consequence of scanning‐electron‐beam exposure is demonstrated for three additional metal–organic frameworks (ZIF‐8, Zn(BeIm)OAc, MIL‐101), highlighting the potential use of an electron beam for top‐down MOF patterning. Lastly, recrystallization of ZIF‐L in the presence of linker is studied and shows distinct differences for crystalline and amorphized material.  相似文献   

16.
Zeolitic imidazolate frameworks (ZIFs) are comprised of transition metal ions (Zn, Co) and a range of imidazolate linkers in a tetrahedral coordination similar to that in crystalline aluminosilicate zeolites. The high surface area, tunable nanoporosity that can be subject to functionalization and the excellent thermal/chemical stability of ZIFs are attractive for heterogeneous catalysis and selective gas adsorption/separation. This review presents the current trends in synthesis, surface modification and catalytic reactions/adsorption of ZIF-based materials with particular emphasis on ZIF-8, which is the most widely studied structure among ZIFs.  相似文献   

17.
李旺 《应用化学》2022,39(7):1065-1072
Zeolitic imidazolate frameworks-8(ZIF-8)is a kind of porous material with large specific surface area and strong stability,which is widely used in gas storage,separation,catalysis and other fields. In this work,the effect of different reaction conditions,such as the molar ratio of Zn2+ to 2-methylimidazole,the amount of surfactant and the reaction solvents,on the size and morphology of ZIF-8 were reported. Among these conditions,the molar ratio of Zn2+ to 2-methylimidazole is the key factor affecting the size and morphology of ZIF-8. The synthesized ZIF-8 nanoparticles were characterized by SEM,BET and XRD. The size of ZIF-8 decreases gradually from 1500 nm to 850 nm then to 250 nm,and the morphology changes from truncated hexahedron to truncated dodecahedron and finally to dodecahedron. The specific surface area of ZIF-8 nanoparticles with a particle size of 250 nm is 1730 m2/g,and the pore size and pore volume are 1. 5 nm and 0. 6 cm3/g,respectively. Therefore,it can be seen that ZIF-8 nanoparticles with a particle size of 250 nm have excellent carrier characteristics. The impregnation method was further adopted to synthesize the supported catalyst,and boron ammonia was used as the reducing agent. The ZIF-8(250 nm)nanoparticles were loaded with metals/precious metal nanoparticles in situ,the component optimization and catalytic performance were further studied. The obtained catalyst ZIF-8/Pt0. 002@Ni0. 2 shows excellent performance in hydrogen generation from aminoborane. © 2022, Science Press (China). All rights reserved.  相似文献   

18.
Zeolitic imidazolate frameworks (ZIFs), in particular ZIF-8 (made of Zn2+ and 2-methyilimidazolate) and cobalt-doped-ZIF-8, are found important for many energy and environmental applications. It was reported that ZIFs show excellent structural stability in water and thus ideal for aqueous applications. However, recent studies also found some evidence that ZIF-8 undergoes hydrolysis in water. Despite the importance of ZIF's stability in many aqueous applications, the extent of ZIFs' degradation in water is still not yet fully understood. In this study, we report a quantitative study of the water stability of 0–100 at% cobalt-doped ZIF-8, using a new combination of analytical tools. The study demonstrated the importance of analyzing both filtered powders and the filtrate liquid systematically, in particular by using UV–Vis spectroscopy and thermogravimetric analysis. The combination of analytical tools allowed the study on the effects of ZIF concentrations in water, cobalt doping levels, and amounts of ligands in water on the water stability of ZIF samples. The effect of cobalt-doping was investigated by using ZIF particles with identical sizes (200–400 nm), in order to eliminate the effects of particle size on hydrolysis. Unlike other synthesis methods, a mechanochemical ball milling method allowed the production of nano-scale ZIF-8 particles with similar sizes, independent of cobalt-doping levels. The proposed combination of analytical tools including UV–Vis spectroscopy can be applied to the study of the water stability of other MOF materials.  相似文献   

19.
To find potential zeolitic imidazolate frameworks(ZIFs)for CO2 capture from flue gas,we built 169,898 ZIF models from 84,949 hypothetical zeolite networks.By calculating their lattice energies,accessible volumes to CO2,the isosteric adsorption heat(Qst)of H2 O,Henry’s constant ratio(SKH)of CO2/N2,percent regenerability(R%),CO2 working capacity(ΔNCO2),CO2/N2 adsorption selectivity(SCO2/N2))and adsorbent performance score(APS),we identi fied 49 hydrophobic ZIF structures that might outplay already-realised ZIFs built from the same imidazolate linkers for CO2 capture from flue gas.  相似文献   

20.
Twenty-one zeolitic imidazolate metal-organic frameworks based on Zn connectors (ZIFs) are derived and compared to known imidazolate networks. Not-yet-synthesized zinc imidazolates are identified on the basis of DFT total energy scoring. The structure with lowest energy is not porous and represents an unusual structure type with zni topology. Total energy scoring indicates the lcs and pcb networks as reliable ZIF candidates. The intrinsic channel chirality of the lcs network makes this rare topology an attractive target for the synthetic effort. Among the porous ZIFs candidates, the sodalite type, sod, is also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号