首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In recent years, intelligent hydrogels which can change their swelling behavior and other properties in response to environmental stimuli such as temperature, pH, solvent composition and electric fields, have attracted great interest. The hydrogels based on polysaccharides incorporated with thermo-responsive polymers have shown unique properties such as biocompatibility, biodegradability, and biological functions in addition to the stimuli-responsive characters. These "smart" hydrogels exhibit single or multiple stimuli-responsive characters which could be used in biomedical applications, including controlled drug delivery, bioengineering or tissue engineering. This review focuses on the recent developments and future trends dealing with stimuli-responsive hydrogels based on grafting/blending of polysaccharides such as chitosan, alginate, cellulose, dextran and their derivatives with thermo-sensitive polymers. This review also screens the current applications of these hydrogels in the fields of drug delivery, tissue engineering and wound healing.  相似文献   

2.
3.
Microfluidic technologies are emerging as an enabling tool for various applications in tissue engineering and cell biology. One emerging use of microfluidic systems is the generation of shape-controlled hydrogels (i.e., microfibers, microparticles, and hydrogel building blocks) for various biological applications. Furthermore, the microfluidic fabrication of cell-laden hydrogels is of great benefit for creating artificial scaffolds. In this paper, we review the current development of microfluidic-based fabrication techniques for the creation of fibers, particles, and cell-laden hydrogels. We also highlight their emerging applications in tissue engineering and regenerative medicine.  相似文献   

4.
水凝胶由于具有优越的保水性、良好的生物相容性和可降解性,被认为是最接近人体组织的生物医用材料。通过构建环境敏感水凝胶可以高度拟合生物组织的微环境,实现其在组织工程与再生医学领域的应用。由于光具有非物理接触和时空分辨等优势,利用光调控技术可实现水凝胶微环境的精确构筑与调控。本文重点介绍了近年来光控水凝胶的构筑,以及在生物医学和材料领域的应用进展。  相似文献   

5.
Biomaterials-based tissue engineering scaffolds play an essential role as an independent therapy or with the combination of cellular or biological active constituents in tissue regeneration applications. However, synthetic grafts, xenografts, and allografts are recognized as foreign materials in human body, resulting in suboptimal clinical outcomes. Recently, autologous materials from a patient's body have drawn great attention in clinical treatment and tissue engineering. Moreover, the autologous scaffolds equipped with the advantages of tissue-like hydrogels have great potential to become a highly versatile tool as personalized hydrogels (PHs) for applications in 3D cell culture and tissue engineering. PHs may feature excellent biocompatibility, tailorable mechanical properties, regenerative capability, non-rejection of grafts/transplants on immunological responses, and customizable properties which could be suitable to meet the personal and clinical care. Here, we present a scoping review of recent progress of PHs with a focus on detailed preparation methods, material properties, and tissue engineering applications along with their challenges and opportunities. It is expected that PHs will circumvent the limitations of current tissue engineering therapies and will be used as next-generation scaffolds for tissue engineering and translational research.  相似文献   

6.
高分子水凝胶是具有三维网络结构的一种新型材料,吸水溶胀后质地柔软,与生物体组织相似,生物相容性和生物可降解性良好,具有一定的力学性能,因此在医学领域具有重要的应用。本文对高分子水凝胶在医学领域的研究热点进行了归纳总结,并重点阐述了高分子水凝胶在药物输送、组织工程支架、伤口敷料和生物传感器等医学领域应用的最新研究进展,并对其未来发展趋势进行了展望。  相似文献   

7.
In recent years, the microfluidic technique has been widely used in the field of tissue engineering. Possessing the advantages of large-scale integration and flexible manipulation, microfluidic devices may serve as the production line of building blocks and the microenvironment simulator in tissue engineering. Additionally, in microfluidic technique-assisted tissue engineering, various biomaterials are desired to fabricate the tissue mimicking or repairing structures (i.e., particles, fibers, and scaffolds). Among the materials, gelatin methacrylate (GelMA)-based hydrogels have shown great potential due to their biocompatibility and mechanical tenability. In this work, applications of GelMA hydrogels in microfluidic technique-assisted tissue engineering are reviewed mainly from two viewpoints: Serving as raw materials for microfluidic fabrication of building blocks in tissue engineering and the simulation units in microfluidic chip-based microenvironment-mimicking devices. In addition, challenges and outlooks of the exploration of GelMA hydrogels in tissue engineering applications are proposed.  相似文献   

8.
Fluorescent polymeric materials such as hydrogels and particles have been attracting attention in many biomedical applications including bio-imaging, optical sensing, tissue engineering, due to their good biocompatibility, biodegradability, and advanced optical property. This review article aims at summarizing recent progress in fluorescent hydrogels and particles based on natural polymers or natural-synthetic hybrid polymers as the building blocks with a concentration on their bio-imaging-related applications. The challenges and future perspectives for the development of natural or natural-synthetic hybrid polymer-based fluorescent hydrogels and particles are also presented.  相似文献   

9.
刘明杰 《高分子科学》2017,35(10):1181-1193
Hydrogels have drawn considerable attention in the past two decades due to their excellent biocompatibility and multi-stimuli responsiveness. They have a wide range of applications in the fields related to tissue engineering, sensors and biomedicine. Their applications are strongly influenced by the surface properties of hydrogels and the interfacial interactions between hydrogels and other substrates. In particular, the surface wettability and adhesion of hydrogels decide their applications as drug carriers and wound dressing materials. Nevertheless, there is a lack of systematic discussion on the surface functionalization strategies of hydrogels. Therefore, this review aims at summarizing the strategies of functionalizing the surfaces of hydrogels and bonding hydrogels with other solid substrates. It also explores the challenges and future perspectives of interfacial engineering of hydrogels.  相似文献   

10.
Supramolecular structures with strain-stiffening properties are ubiquitous in nature but remain rare in the lab. Herein, we report on strain-stiffening supramolecular hydrogels that are entirely produced through the self-assembly of synthetic molecular gelators. The involved gelators self-assemble into semi-flexible fibers, which thereby crosslink into hydrogels. Interestingly, these hydrogels are capable of stiffening in response to applied stress, resembling biological intermediate filaments system. Furthermore, strain-stiffening hydrogel networks embedded with liposomes are constructed through orthogonal self-assembly of gelators and phospholipids, mimicking biological tissues in both architecture and mechanical properties. This work furthers the development of biomimetic soft materials with mechanical responsiveness and presents potentially enticing applications in diverse fields, such as tissue engineering, artificial life, and strain sensors.  相似文献   

11.
《中国化学快报》2023,34(8):108069
Small-molecule hydrogels based on amino acid derivatives have promising applications in many biological fields, including cell culture, drug delivery, and tissue engineering. Although these hydrogels have been widely reported to have low cytotoxicity, biocompatibility, and tunable bioactivity, problems such as harsh preparation conditions and complex material design hinder their application. Herein, by adjusting pH to induce non-covalent interactions between small-molecule tryptophan derivatives (N-[(phenylmethoxy)carbonyl]-l-tryptophan, Mw: 338.35), we developed a self-assembled three-dimensional network hydrogel that can be rapidly formed in seconds. And the supramolecular self-assembly mechanism of the hydrogels was also investigated in detail through experimental characterizations and density functional theory calculation. As-prepared hydrogels also exhibit reversible pH-stimulated response and self-healing properties. This study details a research process for the simple and rapid preparation of tryptophan derivative-based hydrogels, which provides more reference ideas for the future development of materials based on other amino acid derivatives.  相似文献   

12.
Microfluidic adhesion-based cell separation systems are of interest in clinical and biological applications where small sample volumes must be processed efficiently and rapidly. While the ability to capture rare cells from complex suspensions such as blood using microfluidic systems has been demonstrated, few methods exist for rapid and nondestructive release of the bound cells. Such detachment is critical for applications in tissue engineering and cell-based therapeutics in contrast with diagnostics wherein immunohistochemical, proteomic, and genomic analyses can be carried out by simply lysing captured cells. This paper demonstrates how the incorporation of four-arm amine-terminated poly(ethylene glycol) (PEG) molecules along with antibodies within alginate hydrogels can enhance the ability of the hydrogels to capture endothelial progenitor cells (EPCs) from whole human blood. The hydrogel coatings are applied conformally onto pillar structures within microfluidic channels and their dissolution with a chelator allows for effective recovery of EPCs following capture.  相似文献   

13.
水凝胶是一种亲水性聚合物网络,可以溶胀大量水,其物理性质接近软组织.光聚合与传统的聚合方法相比,具有反应速率快、反应条件缓和、反应放热低等特点.因此,光聚合水凝胶广泛应用于生物医学领域.本文介绍了光聚合水凝胶材料,并详细论述了光聚合水凝胶在药物释放体系、组织工程支架材料、细胞受控生长、细胞微囊化和可注射水凝胶等方面的应用.可以预见光聚合水凝胶作为生物材料在组织工程及再生医学领域中具有良好的应用前景.  相似文献   

14.
Supramolecular structures with strain‐stiffening properties are ubiquitous in nature but remain rare in the lab. Herein, we report on strain‐stiffening supramolecular hydrogels that are entirely produced through the self‐assembly of synthetic molecular gelators. The involved gelators self‐assemble into semi‐flexible fibers, which thereby crosslink into hydrogels. Interestingly, these hydrogels are capable of stiffening in response to applied stress, resembling biological intermediate filaments system. Furthermore, strain‐stiffening hydrogel networks embedded with liposomes are constructed through orthogonal self‐assembly of gelators and phospholipids, mimicking biological tissues in both architecture and mechanical properties. This work furthers the development of biomimetic soft materials with mechanical responsiveness and presents potentially enticing applications in diverse fields, such as tissue engineering, artificial life, and strain sensors.  相似文献   

15.
Owing to the special fo rmation of photopolymerized hydrogels,they can effectively control the formation of hydrogels in space and time.Moreover,the photopolymerized hydrogels have mild formation conditions and biocompatibility;therefore,they can be widely used in tissue engineering.With the development and application of manufacturing technology,photopolymerized hydrogels can be widely used in cell encapsulation,scaffold materials,and other tissue engineering fields through more elaborate manufacturing methods.This review covers the types of photoinitiators,manu facturing technologies for photopolymerized hydrogels as well as the materials used,and a summary of the applications of photopolymerized hydrogels in tissue engineering.  相似文献   

16.
采用开环聚合方法合成了一系列水溶性生物可降解的低聚(丙交酯-co-丙烯酸酯碳酸酯)-b-聚乙二醇-b-低聚(丙交酯-co-丙烯酸酯碳酸酯)(OLAC-PEG-OLAC)三嵌段共聚物,并通过光交联方法方便制备得到具生物活性的新型生物可降解水凝胶.流变测试表明水凝胶储存模量(170~10000 Pa)和凝胶时间(0.8~8min)均可通过调节丙烯酸酯碳酸酯(AC)单元数、聚合物浓度及光引发剂浓度等得到控制.降解实验表明水凝胶的降解速率可通过改变AC和丙交酯(LA)单元数进行调控.含巯基的生物活性分子如RGDC短肽可通过迈克尔加成反应直接链接到OLAC-PEG-OLAC上,由此可方便制备可注射性的具生物活性的生物可降解水凝胶.MG63成骨细胞实验表明RGDC短肽功能化的OLAC-PEG-OLAC水凝胶可很好地促进细胞黏附和生长.该快速光交联生物可降解水凝胶以其优异的凝胶、降解和生物功能化等性能可望为生物组织工程提供理想的三维活性多孔支架.  相似文献   

17.
Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical-based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water-soluble cyclopentadienone-norbornadiene (CPD-NBD) adduct is disclosed as a diene photocage for radical-free Diels-Alder photopatterning. We show that this scalable CPD-NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365 nm uncaging of cyclopentadiene. Patterning is first visualized through conjugation of cyanine dyes, then biological utility is highlighted by patterning peptides to direct cellular adhesion. Finally, the ease of use and versatility of this CPD-NBD derivative is demonstrated by direct incorporation into a commercial 3D printing resin to enable the photopatterning of structurally complex, printed hydrogels.  相似文献   

18.
Biodegradable and biocompatible amphoteric poly(amido-amine) (PAA)-based hydrogels, containing carboxyl groups along with amino groups in their repeating unit, were considered as scaffolds for tissue engineering applications. These hydrogels were obtained by co-polymerising 2,2-bisacrylamidoacetic acid with 2-methylpiperazine with or without the addition of different mono-acrylamides as modifiers, and in the presence of primary bis-amines as crosslinking agents. Hybrid PAA/albumin hydrogels were also prepared. The polymerisation reaction was a Michael-type polyaddition carried out in aqueous media. The PAA hydrogels were soft and swellable materials. Cytotoxicity tests were carried out by the direct contact method with fibroblast cell lines on the hydrogels both in their native state (that is, as free bases) and as salts with acids of different strength, namely hydrochloric, sulfuric, acetic and lactic acid. This was done in order to ascertain whether counterion-specific differences in cytotoxicity existed. It was found that all the amphoteric PAA hydrogels considered were cytobiocompatible both as free bases and salts. Selected hydrogels samples underwent degradation tests under controlled conditions simulating biological environments, i.e. Dulbecco medium at pH 7.4 and 37 degrees C. All samples degraded completely and dissolved within 10 d, with the exception of hybrid PAA/albumin hydrogels that did not dissolve even after eight months. The degradation products of all samples turned to be non-cytotoxic. All these results led us to conclude that PAA-based hydrogels have a definite potential as degradable matrices for biomedical applications.  相似文献   

19.
DNA hydrogels have unique properties, such as specific identifiable molecular structures, programmable self-assembly, and excellent biocompatibility, which have led to increasing researches in the field of nanomaterials and biomedical over the past two decades. However, effective methods to regulate the microstructure of DNA hydrogels still lack, which limits their applications in tissue engineering. By introducing DNA scaffolds into rolling circle amplification (RCA) products and implementing rapid self-assembly strategy, we can produce a regulable new type scaffold-net DNA hydrogel in a short time. Scaffolds concentration and RCA time can regulate the microcharacteristics and physical properties of hydrogels. Scaffold-net DNA hydrogels will be a promising bionic platform for the studies of cancer cell metastatic and microenvironment biophysics.  相似文献   

20.
Supramolecular hydrogels are a class of self‐assembled network structures formed via non‐covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol–gel and/or gel–sol transition upon subtle changes in their surroundings. Such stimuli‐responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli‐responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self‐assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号