首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hydrogen energy is considered as one of the ideal clean energies for solving the energy shortage and environmental issues, and developing highly efficient electrocatalysts for overall water splitting to produce hydrogen is still a huge challenge. Herein, for the first time, Ru-doped Cu2+1O vertically arranged nanotube arrays in situ grown on Cu foam (Ru/Cu2+1O NT/CuF) are reported and further investigated for their catalytic properties for overall water splitting. The Ru/Cu2+1O NT/CuF presents ultrahigh catalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions, and it exhibits a small overpotential of 32 mV at 10 mA cm−2 in the HER, and only needs 210 mV overpotential to achieve a current density of 10 mA cm−2 in the OER. Importantly, the alkaline electrolyzer using Ru/Cu2+1O NT/CuF as a bifunctional electrocatalyst only needs 1.53 V voltage to deliver a current density of 10 mA cm−2, which is much lower than the benchmark of IrO2(+)/Pt(−) counterpart (1.64 V at 10 mA cm−2). The excellent performance of the Ru/Cu2+1O NT/CuF catalyst is attributed to its high conductive substrate and special Ru-doped nanotube structure, which provides a high electrochemical active surface area and 3D gas diffusion channel.  相似文献   

2.
Copper-based (Cu-based) catalysts can efficiently convert carbon dioxide to multicarbon products by electrochemical reduction. In this paper, the electrocatalyst with the coexistence of three valence states of Cu(0)-Cu(I)-Cu(II) was successfully prepared by adjusting the experimental conditions. The catalyst was derived from Cu/Cu2O prepared on carbon cloth and exhibited excellent CO2 reduction performance. For carbon-gaseous products, the Faradaic efficiencies for the Cu-2 catalyst consisting of Cu(0)-Cu(I)-Cu(II) were 35.45±3.40 % at −1.66 V vs. RHE, of which 23.85±1.18 % for C2H4. And the synergistic effect of Cu(0)-Cu(I)-Cu(II) significantly improved the selectivity of the catalyst to C2H4. This paper provided an efficient method to rationally tune the valence state of Cu-based catalysts to improve CO2 reduction performance.  相似文献   

3.
Alloying high-cost Pt with transition metals has been considered as an effective route to synthesize the electrocatalysts with low Pt loading and excellent activity towards oxygen reduction reaction (ORR) under acid solution. The galvanic replacement method, as featured with efficiency and simplicity, is widely reported to produce Pt-based bimetallic alloys and thereby declare the significance of reductive transition metal precursor on the enhancement of ORR performance. Herein, mix-phased Cu−Cu2O precursor was applied to prepare carbon black supported highly dispersed PtCu alloy nanoparticles (PtCu/C). The proper Cu−Cu2O ratios can exactly facilitate the generation of small sized PtCu alloy nanoparticles with regulated bimetallic content. Meanwhile, the Cu2O phase is revealed to benefit the electron transfer from Pt to Cu and thus improve the intrinsic activity of Pt active sites. And the metallic Cu can favor the promotion of electrochemical active surface area. Consequently, the as-prepared PtCu/C behaves impressive ORR activity with half-wave potential of 0.88 V (vs. RHE) and mass activity of 0.49 A cm−2 mgPt−1 at 0.8 V, which is 9.8 times of commercial Pt/C catalysts. Our work will offer helpful advices for the development and regulation of novel Pt-based alloy materials towards diverse electrocatalysis.  相似文献   

4.
The atom-cluster interaction has recently been exploited as an effective way to increase the performance of metal-nitrogen-carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure-property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)−N4 single atoms (SAs) could significantly improve the ORR performance of a well-screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu−N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O−O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu−N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half-wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm−2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly-metallic centers for electrocatalysis.  相似文献   

5.
A competitive complexation strategy has been developed to construct a novel electrocatalyst with Zn‐Co atomic pairs coordinated on N doped carbon support (Zn/CoN‐C). Such architecture offers enhanced binding ability of O2, significantly elongates the O?O length (from 1.23 Å to 1.42 Å), and thus facilitates the cleavage of O?O bond, showing a theoretical overpotential of 0.335 V during ORR process. As a result, the Zn/CoN‐C catalyst exhibits outstanding ORR performance in both alkaline and acid conditions with a half‐wave potential of 0.861 and 0.796 V respectively. The in situ XANES analysis suggests Co as the active center during the ORR. The assembled zinc–air battery with Zn/CoN‐C as cathode catalyst presents a maximum power density of 230 mW cm?2 along with excellent operation durability. The excellent catalytic activity in acid is also verified by H2/O2 fuel cell tests (peak power density of 705 mW cm?2).  相似文献   

6.
The Cu/ZSM-5 catalysts prepared by different copper precursors were used for the selective catalytic reduction (SCR) of NO x with NH3. The Cu/ZSM-5 catalyst prepared by the copper nitrate (Cu/ZSM-5-N) presented the best performance among the Cu/ZSM-5 catalysts and showed above 90 % NO x conversion at 225–405 °C. The average particle size of CuO was 5.82, 9.20, and 11.01 nm over Cu/ZSM-5-N, Cu/ZSM-5-S (prepared by copper sulfate), and Cu/ZSM-5-C (prepared by copper chloride), respectively. The Cu/ZSM-5-N catalyst showed the highly dispersed copper species, the strong surface acidity, and the excellent redox ability compared with the Cu/ZSM-5-C and Cu/ZSM-5-S catalysts. The Cu+ and Cu2+ existed in the Cu/ZSM-5 catalysts and the abundant Cu+ over Cu/ZSM-5-N might be responsible for the superior SCR activity.  相似文献   

7.
Since the water oxidation half-reaction requires the transfer of multi-electrons and the formation of O−O bond, it's crucial to investigate the catalytic behaviours of semiconductor photoanodes. In this work, a bio-inspired copper-bipyridine catalyst of Cu(dcbpy) is decorated on the nanoporous Si photoanode (black Si, b-Si). Under AM1.5G illumination, the b-Si/Cu(dcbpy) photoanode exhibits a high photocurrent density of 6.31 mA cm−2 at 1.5 VRHE at pH 11.0, which is dramatically improved from the b-Si photoanode (1.03 mA cm−2) and f-Si photoanode (0.0087 mA cm−2). Mechanism studies demonstrate that b-Si/Cu(dcbpy) has improved light-harvesting, interfacial charge-transfer, and surface area for water splitting. More interestingly, b-Si/Cu(dcbpy) exhibits a pH-dependent water oxidation behaviour with a minimum Tafel slope of 241 mV/dec and the lowest overpotential of 0.19 V at pH 11.0, which is due to the monomer/dimer equilibrium of copper catalyst. At pH ∼11, the formation of dimeric hydroxyl-complex could form O−O bond through a redox isomerization (RI) mechanism, which decreases the required potential for water oxidation. This in-depth understanding of pH-dependent water oxidation catalyst brings insights into the design of dimer water oxidation catalysts and efficient photoanodes for solar energy conversion.  相似文献   

8.
《中国化学快报》2022,33(8):3721-3725
Self-supported transition-metal single-atom catalysts (SACs) facilitate the industrialization of electrochemical CO2 reduction, but suffer from high structural heterogeneity with limited catalytic selectivity. Here we present a facile and scalable approach for the synthesis of self-supported nickel@nitrogen-doped carbon nanotubes grown on carbon nanofiber membrane (Ni@NCNTs/CFM), where the Ni single atoms and nanoparticles (NPs) are anchored on the wall and inside of nitrogen-doped carbon nanotubes, respectively. The side effect of Ni NPs was further effectively inhibited by alloying Ni with Cu atoms to alter their d-band center, which is theoretically predicted and experimentally proved. The optimal catalyst Ni9Cu1@NCNTs/CFM exhibits an ultrahigh CO Faradic efficiency over 97% at ?0.7 V versus reversible hydrogen electrode. Additionally, this catalyst shows excellent mechanical strength which can be directly used as a self-supporting catalyst for Zn-CO2 battery with a peak power density of ~0.65 mW/cm2 at 2.25 mA/cm2 and a long-term stability for 150 cycles. This work opens up a general avenue to facilely prepare self-supported SACs with unitary single-atom site for CO2 utilization.  相似文献   

9.
《中国化学快报》2023,34(1):107236
Fe-N/C is a promising oxygen reduction reaction (ORR) catalyst to substitute the current widely used precious metal platinum. Cost-effectively fabricating the Fe-N/C material with high catalytic activity and getting in-depth insight into the responsible catalytic site are of great significance. In this work, we proposed to use biomass, tea leaves waste, as the precursor to prepare ORR catalyst. By adding 5% FeCl3 (wt%) into tea precursor, the pyrolysis product (i.e., 5%Fe-N/C) exhibited an excellent four-electron ORR activity, whose onset potential was only 10 mV lower than that of commercial Pt/C. The limiting current density of 5%Fe-N/C (5.75 mA/cm2) was even higher than Pt/C (5.44 mA/cm2). Compared with other biomass or metal organic frameworks derived catalysts, 5%Fe-N/C showed similar ORR activity. Also, both the methanol tolerance and material stability performances of as-prepared 5%Fe-N/C catalyst were superior to that of Pt/C. X-ray adsorption fine structure characterization revealed that the FeN4O2 might be the possible catalytic site. An appropriate amount of iron chloride addition not only facilitated catalytic site formation, but also enhanced material conductivity and reaction kinetics. The results of this work may be useful for the Fe based transition metal ORR catalyst design and application.  相似文献   

10.
Electrochemical CO2 reduction reaction (CO2RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2H4). However, achieving high C2H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2H4 with a current density of 497.2 mA cm−2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4. The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2RR. Furthermore, theoretical calculations demonstrate that the Cuδ+/Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.  相似文献   

11.
Electricity generation and chemical productions are both critically important for the sustainable development of modern civilization. Here, a novel bifunctional Zn-organic battery has been established for the concurrent enhanced electricity output and semi-hydrogenations of a series of biomass aldehyderivatives, for the high value-added chemical syntheses. Among them, the typical Zn-furfural (FF) battery equipped with Cu foil-supported edge-enriched Cu nanosheets as cathodic electrocatalyst (Cu NS/Cu foil), provides a maximum current density and power density of 14.6 mA cm−2 and 2.00 mW cm−2, respectively, and in the meantime, produces high value product, furfural alcohol (FAL). The Cu NS/Cu foil catalyst exhibits excellent electrocatalytic performance of ≈93.5 % conversion ratio and ≈93.1 % selectivity for FF semi-hydrogenation at a low potential of -1.1 V vs. Ag/AgCl by using H2O as H source, and shows impressive performance for various biomass aldehyderivatives semi-hydrogenation.  相似文献   

12.
Electrocatalysts for both the oxygen reduction and evolution reactions (ORR and OER) are vital for the performances of rechargeable metal–air batteries. Herein, we report an advanced bifunctional oxygen electrocatalyst consisting of porous metallic nickel‐iron nitride (Ni3FeN) supporting ordered Fe3Pt intermetallic nanoalloy. In this hybrid catalyst, the bimetallic nitride Ni3FeN mainly contributes to the high activity for the OER while the ordered Fe3Pt nanoalloy contributes to the excellent activity for the ORR. Robust Ni3FeN‐supported Fe3Pt catalysts show superior catalytic performance to the state‐of‐the‐art ORR catalyst (Pt/C) and OER catalyst (Ir/C). The Fe3Pt/Ni3FeN bifunctional catalyst enables Zn–air batteries to achieve a long‐term cycling performance of over 480 h at 10 mA cm−2 with high efficiency. The extraordinarily high performance of the Fe3Pt/Ni3FeN bifunctional catalyst makes it a very promising air cathode in alkaline electrolyte.  相似文献   

13.
The design and synthesis of metal-free catalysts with superior electrocatalytic activity, high durability, low cost, and under mild conditions is extremely desirable but remains challenging. To address this problem, a polymer-assisted electrochemical exfoliation technique of graphite in the presence of an aqueous acidic medium is reported. This simple, cost-effective, and mass-scale production approach could open the possibility for the synthesis of high-quality nitrogen-doped graphene–polypyrrole (NG-PPy). The NG-PPy catalyst displays an improved half wave potential (E1/2=0.77 V) in alkaline medium compared with G-PPy (E1/2=0.66 V). Most importantly, this catalyst demonstrates excellent stability with high methanol tolerance, and it outperforms the commercial Pt/C catalyst and other previously reported metal-free catalysts. The content of graphitic nitrogen atoms is the key factor for the enhancement of electrocatalytic activity towards oxygen reduction reactions (ORR). Interestingly, the NG-PPy catalyst can be used as a cathode material in a zinc–air battery, which demonstrates a higher peak power density (59 mW cm−2) than G-PPy (36.6 mW cm−2), highlighting the importance of the low-cost material synthesis approach towards the development of metal-free efficient ORR catalysts for fuel cell and metal–air battery applications. Remarkably, the polymer-assisted electrophoretic exfoliation of graphite with a high yield (≈88 wt %) of few-layer graphene flakes could pave the way towards the mass production of high-quality graphene for a variety of applications.  相似文献   

14.
The coordination number between copper and nitrogen in copper/nitrogen-based electrocatalysts is important for boosting the oxygen reduction reaction (ORR). However, it is difficult to control unsaturated copper/nitrogen constructions as well as to compare their ORR performances in similar carbon matrices in a simple yet efficient manner. In this study, we have easily attained two types of Cu+−N2 and Cu2+−N4 constructions simply by etching pyrolyzed Cu-doped zeolitic imidazolate framework nanoleaves (Cu-ZIF-L) with sulfuric acid or nitric acid, respectively. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra were recorded to further confirm the different copper/nitrogen constructions after the different acid treatments. Electrochemical studies have demonstrated that Cu+−N2 sites are more active in boosting the ORR performance than Cu2+−N4 sites. Furthermore, Cu−N/C−H2SO4, used as an air cathode in a zinc-air battery, exhibited excellent performance and stability.  相似文献   

15.
Heterogeneously catalyzed N-formylation of amines to formamide with CO2/H2 is highly attractive for the valorization of CO2. However, the relationship of the catalytic performance with the catalyst structure is still elusive. Herein, mixed valence catalysts containing Cu2O/Cu interface sites were constructed for this transformation. Both aliphatic primary and secondary amines with diverse structures were efficiently converted into the desired formamides with good to excellent yields. Combined ex and in situ catalyst characterization revealed that the presence of Cu2O/Cu interface sites was vital for the excellent catalytic activity. Density functional theory (DFT) calculations demonstrated that better catalytic activity of Cu2O/Cu(111) than Cu(111) is attributed to the assistance of oxygen at the Cu2O/Cu interface (Ointer) in formation of Ointer-H moieties, which not only reduce the apparent barrier of HCOOH formation but also benefit the desorption of the desired N-formylated amine, leading to high activity and selectivity.  相似文献   

16.
Transition-metal selenides are emerging as alternative bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR); however, their activity and stability are still less than desirable. Herein, ultrafine Co0.85Se nanoparticles encapsulated into carbon nanofibers (CNFs), Co0.85Se@CNFs, is reported as an integrated bifunctional catalyst for OER and ORR. This catalyst exhibits a low OER potential of 1.58 V vs. reversible hydrogen electrode (RHE) (EJ=10, OER) to achieve a current density (J) of 10 mA cm−2 and a high ORR potential of 0.84 V vs. RHE (EJ=−1, ORR) to reach −1 mA cm−2. Thus, the potential between EJ=10, OER and EJ=−1, ORR is only 0.74 V, indicating considerable bifunctional activity. The excellent bifunctionality can be attributed to high electronic conduction, abundant electrochemically active sites, and the synergistic effect of Co0.85Se and CNFs. Furthermore, this Co0.85Se@CNFs catalyst displays good cycling stability for both OER and ORR. This study paves a new way for the rational design of hybrid catalysts composed of transition-metal selenides and carbon materials for efficiently catalyzing OER and ORR.  相似文献   

17.
The development of efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) still remains a challenge in a wide range of renewable energy technologies. Herein, CuCo alloy nanoparticles encapsulated by nitrogen-doped carbonaceous nanoleaves (CuCo-NC) have been synthesized from a Cu(OH)2/2D leaf-like zeolitic imidazolate framework (ZIF-L)-pyrolysis approach. Leaf-like Cu(OH)2 is first prepared by the ultrasound-induced self-assembly of Cu(OH)2 nanowires. The efficient encapsulation of Cu(OH)2 in ZIF-L is obtained owing to the morphology fitting between the leaf-like Cu(OH)2 and ZIF-L. CuCo-NC catalysts present superior electrocatalytic activity and stability toward ORR and OER over the commercial Pt/C and IrO2, respectively, which are further used as bifunctional oxygen electrocatalysts in Zn–air batteries and exhibit impressive performance, with a high peak power density of 303.7 mW cm−2, large specific capacity of up to 751.4 mAh g−1 at 20 mA cm−2, and a superior recharge stability.  相似文献   

18.
Iron phthalocyanine (FePc) with unique FeN4 site has attracted increasing interests as a promising non-precious catalyst. However, the plane symmetric structure endows FePc with undesired catalytic performance toward the oxygen reduction reaction (ORR). Here, we report a novel one-dimensional heterostructured ORR catalyst by coupling FePc at polyoxometalate-encapsulated carbon nanotubes (FePc-{PW12}@NTs) using host-guest chemistry. The encapsulation of polyoxometalates can induce a local tensile strain of single-walled NTs to strengthen the interactions with FePc. Both the strain and curvature effects of {PW12}@NT scaffold tune the geometric structure and electronic localization of FeN4 centers to enhance the ORR catalytic performance. As expected, such a heterostructured FePc-{PW12}@NT electrocatalyst exhibits prominent durability, methanol tolerance, and ORR activity with a high half-wave potential of 0.90 V and a low Tafel slope of 30.9 mV dec−1 in alkaline medium. Besides, the assembled zinc-air battery demonstrates an ultrahigh power density of 280 mW cm−2, excellent charge/discharge ability and long-term stability over 500 h, outperforming that of the commercial Pt/C+IrO2 cathode. This study offers a new strategy to design novel heterostructured catalysts and opens a new avenue to regulate the electrocatalytic performance of phthalocyanine molecules.  相似文献   

19.
Design and synthesis of low-cost and efficient bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in Zn-air batteries are essential and challenging. We report a facile method to synthesize heterostructure carbon consisting of graphitic and amorphous carbon derived from the agricultural waste of red bean pods. The heterostructure carbon possesses a large surface area of 625.5 m2 g−1, showing ORR onset potential of 0.89 V vs. RHE and OER overpotential of 470 mV at 5 mA cm−2. Introducing hollow FeCo nanoparticles and nitrogen dopant improves the bifunctional catalytic activity of the carbon, delivering ORR onset potential of 0.93 V vs. RHE and OER overpotential of 360 mV. Electron energy-loss spectroscopy (EELS) O K-edge map suggests the presence of localized oxygen on the FeCo nanoparticles, suggesting the oxidation of the nanoparticles. Zn-air battery with these carbon-based catalysts exhibits a peak power density as high as 116.2 mW cm−2 and stable cycling performance over 210 discharge/charge cycles. This work contributes to the advancement of bifunctional oxygen electrocatalysts while converting agricultural waste into value-added material.  相似文献   

20.
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号