首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A novel H2O2 amperometric biosensor based on the electrodeposition of gold nanoparticles (AuNPs) and CdS quantum dots (CdS QDs) onto a carbon paste electrode (CPE) and immobilizing hemoglobin (Hb) with ionic liquid (IL), is presented in this article. The modification process of the electrode was monitored by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to synergistic effects of AuNPs, CdS QDs and IL, the biosensor exhibited high stability and good bioelectrocatalytic ability to H2O2 with a linear concentration range from 10 to 750 µM and a detection limit of 4.35 µM (S/N=3).  相似文献   

2.
Photoelectrochemical (PEC) biosensing with semiconductor quantum dots (QDs) has received great attention because it integrates the advantages of both photo‐excitation and electrochemical detection. During the photon‐to‐electricity conversion in PEC processes, electron–hole (charge) separation competes with electron–hole recombination, and the net effect essentially determines the performance of PEC biosensors. Herein, we propose a new approach for slowing down electron–hole recombination to increase charge separation efficiency for PEC biosensor development. Through doping with Mn2+, a pair of d bands (4T1 and 6A1) is inserted between the conduction and valence bands of CdS QDs, which alters the electron–hole separation and recombination dynamics, allowing the generation of long‐lived charge carriers with ms‐scale lifetime that decay about 104–105‐fold more slowly than in the case of undoped QDs. Photocurrent tests indicated that Mn2+ doping resulted in an approximately 80 % increase in photocurrent generation compared with undoped CdS QDs. For application, the Mn‐doped CdS QDs were coated on the surface of a glassy carbon electrode and functionalized with a cell surface carbohydrate‐specific ligand (3‐aminophenylboronic acid). In this way, a sensitive cytosensor for K562 leukemia cells was constructed. Moreover, the sugar‐specific binding property of 3‐aminophenylboronic acid allowed the electrode to serve as a switch for the capture and release of cells. This has been further explored with a view to developing a reusable PEC cytosensing platform.  相似文献   

3.
The photoactivity of CdS nanorods was greatly improved by amino functionalized accordion-like MXene and spherical ZnSnO3. MXene possesses good electron transfer capability and ZnSnO3 presents matched energy band with CdS, which deeply accelerate the electron transfer and prevent the recombination of photogenerated electron-hole pair, leading to a strong photoelectrochemical (PEC) response. Taking the merit of the improved photoactivity of CdS nanorods, a novel PEC biosensor was constructed for DNA hydromethylation detection based on immune recognition of target molecule, where 5-hydroxymethyl-2′-deoxycytidine triphosphate (5hmdCTP) was employed as detect target, CdS/MXene was used as photoactive material, and ZnSnO3 was adopted as signal amplification unit. Under enzymatic covalent reaction of –CH2OH of 5hmdCTP with –NH2 of MXene, 5hmdCTP was specifically recognized and captured. Then, taking advantages of the covalent reaction between phosphate group of 5hmdCTP and ZnSnO3, the signal amplification unit was captured. Under the optimum conditions, this PEC biosensor presents wide linear range of 0.008–100 nM and low detection limit of 4.21 pM (3σ). The applicability of the developed method was evaluated by investigating the effect of Cd2+ and perfluorohexane compound pollutant on 5-hydroxymethylcytosine content in the genomic DNA of the roots and leaves of wheat seedlings.  相似文献   

4.
MicroRNA is a vital biomarker because of its abnormal expression in the emergence and development of diseases, especially in cancers. Herein, a label-free fluorescent sensing platform is proposed for detecting microRNA-21, coupled with the cascade toehold-mediated strand displacement reaction and magnetic beads. Target microRNA-21 acts as an initiator to trigger the cascade toehold-mediated strand displacement reaction and it outputs double-stranded DNA. After magnetic separation, the double-stranded DNA is intercalated by SYBR Green I, resulting in an amplified fluorescent signal. Under the optimal conditions, a wide linear range (0.5–60 nmol/L) and low limits of detection (0.19 nmol/L) are exhibited. What's more, the biosensor shows great specificity and reliability between microRNA-21 and other microRNAs involved in cancer (microRNA-34a, microRNA-155, microRNA-10b, and let-7a). Owing to the properties of fabulous sensitivity, high selectivity, and simplicity of operator, the proposed method paves a promising way for microRNA-21 detection in cancer diagnosis and biological research.  相似文献   

5.
MicroRNAs are a class of important biomarkers,and the simultaneous detection of multiple miRNAs can provide valuable information about many diseases and biological processes.Amplification-free determination has been developed for the analysis of multiple miRNAs because of its characteristic low cost and high fidelity.Herein,a method for the amplification-free analysis and simultaneous detection of multiple miRNAs based on a so-called pico-HPLC-LIF system is described.In this process,a bare open capilla ry with an inner diameter of 680 nm is used as a sepa ration column for a sample volume of several hundreds of femtoliters(300 fL),followed by separation and detection.The technique has a zeptomolar limit of detection.The method was applied to detect cellular miRNA from adenocarcinomic human alveolar basal epithelial(A549) cell extracts,and the simultaneous detection of the mir-182,miR-155,and let-7 a was achieved.The results showed that the expression of mir-182 and miR-155 was up-regulated and that of let-7 a was down-regulated in A549 cells.This method for multiple miRNAs detection is expected to have broad applications in miRNA-based disease diagnosis,prognosis,treatment,and monitoring.  相似文献   

6.
《化学:亚洲杂志》2017,12(21):2780-2789
As a newly developed technique, photoelectrochemical (PEC) immunoassays have attracted great attention in recent years because of their low cost and desirable sensitivity. Because the detection signal originates from the photoelectric conversion of photoelectric materials, the appearance and application of quantum dots (QDs), which possess unique photophysical properties and regulated optoelectronic characteristics, has taken the development of PEC immunoassays to new heights. This review concisely introduces the general mechanism of QDs‐based photoelectric conversion for immunoassays and summarizes the current advances in QD applications in immunoassays. Given that signal strategies and photoactive materials are the key elements in PEC biosensor systems, we comprehensively highlight the state‐of‐the‐art signaling strategies and various applications of QDs in PEC immunoassays to introduce advances in QDs‐based PEC immunoassays. Finally, challenges and future developmental trends are briefly discussed  相似文献   

7.
《Electroanalysis》2003,15(3):219-224
A novel hydrogen peroxide biosensor has been constructed based on the characteristics of the carbon nanotube. The multiwall carbon nanotube (MWNT) was used as a coimmobilization matrix to incorporate horseradish peroxidase (HRP) and electron transfer mediator methylene blue (MB) onto a glassy carbon electrode surface. Cyclic voltammetry and amperometric measurements were employed to demonstrate the feasibility of methylene blue as an electron carrier between the immobilized peroxidase and the surface of glassy carbon electrode. The amperometric response of this resulting biosensor to H2O2 shows a linear relation in the range from 4 μM to 2 mM. The detection limit was 1 μM when the signal to noise ratio is 3. The presence of dopamine and ascorbic acid hardly affects the sensitive determination of H2O2. This biosensor also possesses very good stability and reproducibility.  相似文献   

8.
Lai S  Chang X  Mao J  Zhai Y  Lian N  Zheng H 《Annali di chimica》2007,97(1-2):109-121
CdS quantum dots (QDs) modified with bismuthiol II potassium salt is prepared in one step. Based on the characteristic fluorescence enhancement of CdS QDs at 480 nm by silver ions, simultaneously, a red shift of fluorescence emission bands of CdS QDs from 460 to 480 nm is observed. A simple, rapid, sensitive and specific detection method for silver ion is proposed. Under optimum conditions, the fluorescence intensity of CdS QDs was linearly proportional to silver ion concentration from 0.01 to 5.0 micromol L(-1) with a detection limit of 1.6 nmol L(-1). In comparison with single organic fluorophores, functionalized CdS quantum dots are brighter, more stable against photobleaching and do not suffer from blinking. Furthermore, the proposed method shows higher sensitivity and selectivity. A possible fluorescence enhancement mechanism is also studied.  相似文献   

9.
PAMAM树形分子模板法原位合成发紫光CdS量子点的研究   总被引:1,自引:0,他引:1  
半导体纳米粒子由于具有明显的量子尺寸效应,被形象地称为量子点(quantum dots)。量子点的发射波长可以通过改变粒子尺寸进行调节,并且由于是多电子体系发光,其荧光寿命较长,量子产率和光学稳定性能均优于荧光染料,可望成为新一代的发光材料和荧光探针[1,2]。为此,制备尺寸可控、荧光量子产率高、水溶性的半导体量子点成为很多科研人员的研究目标。树形分子科学的发展,为纳米材料的合成开辟了一条崭新的道路。人们利用树形分子独特的结构特征,将其作为纳米反应器和纳米容器,合成了尺寸均匀、分散性好的Ag、Cu、Pt、Pd等纳米簇[3 ̄7]。1998…  相似文献   

10.
Photocatalytic dual-functional reaction under visible light irradiation represents a sustainable development strategy. In detail, H2 production coupled with benzylamine oxidation can remarkably lower the cost by replacing sacrificial agents. In this work, Cd S quantum dots(Cd S QDs) were successfully loaded onto the surface of a porphyrinic metal-organic framework(Pd-PCN-222) by the electrostatic selfassembly at room temperature. The consequent Pd-PCN-222/CdS heterojunction composites...  相似文献   

11.
A novel TiO2 nanotube array/CdS nanoparticle/ZnO nanorod (TiO2 NT/CdS/ZnO NR) photocatalyst was constructed which exhibited a wide‐absorption (200–535 nm) response in the UV/Vis region and was applied for the photoelectrocatalytic (PEC) degradation of dye wastewater. This was achieved by chemically assembling CdS into the TiO2 NTs and then constructing a ZnO NR layer on the TiO2 NT/CdS surface. Scanning electron microscopy (SEM) results showed that a new structure had been obtained. The TiO2 NTs looked like many “empty bottles” and the ZnO NR layer served as a big lid. Meanwhile the CdS NPs were encapsulated between them with good protection. After being sensitized by the CdS NPs, the absorption‐band edge of the obtained photocatalyst was obviously red‐shifted to the visible region, and the band gap was reduced from its original 3.20 eV to 2.32 eV. Photoelectric‐property tests indicated that the TiO2 NT/CdS/ZnO NR material maintained a very high PEC activity in both the ultraviolet (UV) and the visible region. The maximum photoelectric conversion efficiencies of TiO2 NT/CdS/ZnO NR were 31.8 and 5.98 % under UV light (365 nm) and visible light (420–800 nm), respectively. In the PEC oxidation, TiO2 NT/CdS/ZnO NR exhibited a higher removal ability for methyl orange (MO) and a high stability. The kinetic constants were 1.77×10?4 s?1 under UV light, which was almost 5.9 and 2.6 times of those on pure TiO2 NTs and TiO2 NT/ZnO NR, and 2.5×10?4 s?1 under visible light, 2.4 times those on TiO2 NT/CdS.  相似文献   

12.
A simple layer‐by‐layer (LBL) assembly strategy was established for constructing a novel reagentless biosensor based on a nanocomposite of methylene blue multiwalled carbon nanotubes (MB‐MWNTs). A nanocomposite of MB‐MWNTs was obtained by direct premixing and possessed good dispersion in barbital‐HCl buffer. Through electrostatic interactions, the nanocomposite of MB‐MWNTs could alternately be assembled with horseradish peroxidase (HRP) on the Au electrode modified with precursor films. UV/Vis spectra and scanning electron microscopy (SEM) were applied to reveal the formation of the nanocomposite of MB‐MWNTs. The LBL assembly process was also verified by electrochemical impedance spectroscopy (EIS). The MB is a well‐established mediator and efficiently facilitated the electron shuttle between the HRP and the electrode, as demonstrated by the cyclic voltammetry (CV) measurements. The as‐prepared reagentless biosensor exhibited a fast response for the determination of hydrogen peroxide (H2O2) and reached 95% of the steady‐state current within 3 s. It was found that the linear response range of the reagentless biosensor for H2O2 was from 4.0 μM to 3.78 mM with a detection limit of 1.0 μM and a sensitivity of 22.5 μA mM−1. The biosensor exhibited a high reproducibility and stability.  相似文献   

13.
CdS quantum dots (QDs) modified with l-cysteine has been prepared by one step. They are water-soluble and biocompatible. To improve CdS QDs stability and interaction between silver ion and functionalized CdS QDs in aqueous solution, some amounts of fresh l-cysteine were added to functionalized CdS solution. Based on the characteristic fluorescence enhancement of CdS QDs at 545 nm by silver ions in the presence of some amounts of fresh l-cysteine, simultaneously, a gradual red shift of fluorescence emission bands of CdS QDs from 545 to 558 nm was observed. A simple, rapid, sensitive and specific detection method for silver ion was proposed. Under optimum conditions, the fluorescence intensity of CdS QDs is linearly proportional to silver concentration from 2.0 × 10−8 to 1.0 × 10−6 mol/L with a detection limit of 5.0 × 10−9 mol/L. In comparison with single organic fluorophores, functionalized CdS quantum dots are brighter, more stable against photobleaching, and don’t suffer from blinking. Furthermore, owing to the fluorescence enhancement effect of CdS QDs by silver ion, the proposed method showed lower detection blank and higher sensitivity. Possible fluorescence enhancement mechanism was also studied.  相似文献   

14.
We fabricated a novel fluorescence biosensor for the selective detection of thrombin by using bovine serum albumin-capped CdS quantum dots (BSA-CdS QDs). Two kinds of designed DNA (DNA1 and DNA2) could bind to CdS QDs through the electrostatic interaction between DNA and Cd2+ on the surface of CdS QDs. The obtained DNA/BSA-CdS QDs kept stable in the solution with the fluorescence intensity obviously enhanced. Hairpin structure of DNA1contained two domains, one is the aptamer sequence of thrombin and the other is the complementary sequence of DNA2. When thrombin was added, it would bind to DNA1 and induce the hairpin structure of DNA1 changed into G-quadplex structure. Meanwhile, DNA2 would transfer from the surface of CdS QDs to DNA1 via hybridization, which resulted in the removal of DNA1 and DNA2 from the surface of CdS QDs, and led to the fluorescence intensity of CdS QDs reduced. Thus, the determination of thrombin could be achieved by monitoring the change of the fluorescence intensity of CdS QDs. The present method is simple and fast, and exhibits good selectivity for thrombin over other proteins. We have successfully detected thrombin in human serum samples with satisfactory results.  相似文献   

15.
High‐quality CdS and Cu7S4 quantum dots (QDs) were synthesized with N,N‐dibutylthiourea (DBTU) as an organic sulfur source. In this method, nucleation and growth reactions were controlled simply by the heating rate of the reaction. The mild oxidation conditions gave monodisperse CdS QDs exhibiting pure band‐edge emission with relatively high photoluminescence quantum yield. During the synthesis of Cu7S4 QDs, the addition of dodecanethiol to the reaction system controlled the reaction rate to give monodisperse spherical or disk‐shaped QDs. A hundred‐gram scale of copper precursor could be used to generate the high‐quality Cu7S4 QDs, indicating that an industrial‐scale reaction is achievable with our method. As observed in anisotropic noble‐metal nanocrystals, larger disk‐shaped Cu7S4 QDs showed lower localized‐surface‐plasmon resonance energy in the near‐infrared region. The disk‐shaped Cu7S4 QDs could be used effectively as templates to form cation‐exchanged monodisperse disk‐shaped CdS QDs.  相似文献   

16.
Bidentate chelation, meso‐2,3‐dimercaptosuccinic acid (DMSA), was used as a stabilizer for the synthesis of CdTe quantum dots (QDs). The bidentate chelate QDs, characterized with FT‐IR, PL, and UV/Vis spectroscopy; element analysis; and high‐resolution transmission electron microscope, exhibited surface traps due to the large surface/volume ratio of QD particle and the steric hindrance of the DMSA molecule. The unpassivated surface of the QDs produced a narrower band gap than the core and electrochemiluminescent (ECL) emission at relatively low cathodic potential. In air‐saturated pH 7.0 buffer, the QDs immobilized on electrode surface showed an intense ECL emission peak at ?0.85 V (vs. Ag/AgCl). H2O2 produced from electrochemical reduction of dissolved oxygen was demonstrated to be the co‐reactant, which avoided the need of strong oxidant as the co‐reactant and produced a sensitive analytical method for peroxidase‐related analytes. Using hydroquinone/horseradish peroxidase/H2O2 as a model system, a new, reagentless, phenolic, ECL biosensor for hydroquinone was constructed, based on the quenching effect of ECL emission of QDs by consumption of co‐reactant H2O2. The biosensor showed a linear range of 0.2–10 μM with acceptable stability and reproducibility. This work opens new avenues in the search for new ECL emitters with excellent analytical performance and makes QDs a more attractive alternative in biosensing.  相似文献   

17.
A green and simple method was found to prepare CdS/CdSe co-sensitized photoelectrodes for the quantum dots sensitized solar cells application. All the assembly processes of CdS and CdSe quantum dots (QDs) were carried out in aqueous solution. CdS and CdSe QDs were sequentially assembled onto TiO2-nano-SiO2 hybrid film by two steps. Firstly, CdS QDs were deposited in situ over TiO2-nano-SiO2 hybrid film by the successive ionic layer adsorption and reaction (SILAR) process in water. Secondly, using 3-mercaptopropionic acid (3-MPA) as a linker molecule, the pre-prepared colloidal CdSe QDs (~3.0 nm) dissolved in water was linked onto the TiO2-nano-SiO2 hybrid film by the self-assembled monolayer technique with the mode of dropwise. The mode is simple and advantageous to saving materials and time. The results show that the photovoltaic performance of the cells is enhanced with the increase of SILAR cycles for TiO2-nano-SiO2/CdS photoelectrode. The power conversion efficiency of 2.15 % was achieved using the co-sensitization photoelectrode prepared by using 6 SILAR cycles of CdS plus CdSe (TiO2-nano-SiO2/CdS(6)/CdSe) under the illumination of one sun (AM1.5, 100 mW/cm2).  相似文献   

18.
Mei Hu  Hao-Ting Lu  Lian-Hui Wang 《Talanta》2010,82(3):997-536
A novel label-free detection system based on CdTe/CdS quantum dots (QDs) was designed for the direct measurement of glucose. Herein we demonstrated that the photoluminescence (PL) of CdTe/CdS QDs was sensitive to hydrogen peroxide (H2O2). With d-glucose as a substrate, H2O2 that intensively quenched the QDs PL can be produced via the catalysis of glucose oxidase (GOx). Experimental results showed that the decrease of the QDs PL was proportional to the concentration of glucose within the range of 1.8 μM to 1 mM with the detection limit of 1.8 μM under the optimized experimental conditions. In addition, the QD-based label-free glucose sensing platform was adapted to 96-well plates for fluorescent assay, enhancing the capabilities and conveniences of this detection platform. An excellent response to the concentrations of glucose was found within the range of 2-30 mM. Glucose in blood and urine samples was effectively detected via this strategy. The comparison with commercialized glucose meter indicated that this proposed glucose assay system is not only simple, sensitive, but also reliable and suitable for practical application. The high sensitivity, versatility, portability, high-throughput and low cost of this glucose sensor implied its potential in point-of-care clinical diagnose of diabetes and other fields.  相似文献   

19.
This paper describes the synthesis of core-shell CdSe/CdS quantum dots (QDs) in aqueous solution by a simple photoassisted method. CdSe was prepared from cadmium nitrate and 1,1-dimethylselenourea precursors under illumination for up to 3 h using a pulsed Nd:YAG laser at 532 nm. The effects that the temperature and the laser irradiation process have on the synthesis of CdSe were monitored by a series of experiments using the precursors at a Cd:Se concentration ratio of 4. Upon increasing the temperature (80-140 degrees C), the size of the CdSe QDs increases and the time required for reaching a maximum photoluminescence (PL) is shortened. Although the as-prepared CdSe QDs possess greater quantum yields (up to 0.072%) compared to those obtained by microwave heating (0.016%), they still fluoresce only weakly. After passivation of CdSe (prepared at 80 degrees C) by CdS using thioacetamide as the S source (Se:S concentration ratio of 1) at 80 degrees C for 24 h, the quantum yield of the core-shell CdSe/CdS QDs at 603 nm is 2.4%. Under UV irradiation of CdSe/CdS for 24 h using a 100-W Hg-Xe lamp, the maximum quantum yield of the stable QDs is 60% at 589 nm. A small bandwidth (W1/2 < 35 nm) indicates the narrow size distribution of the as-prepared core-shell CdSe/CdS QDs. This simple photoassisted method also allows the preparation of differently sized (3.7-6.3-nm diameters) core-shell CdSe/CdS QDs that emit in a wide range (from green to red) when excited at 480 nm.  相似文献   

20.
We have synthesised water soluble CdS/ZnS core-shell quantum dots (QDs) capped with mercaptoacetic acid (MAA). They were characterised by UV–vis absorption spectroscopy, fluorescence spectroscopy, FT-IR and transmission electron microscopy. Such QDs can be used as fluorescent probes for the determination of metal ions because they quench the fluorescence of the QDs. The QDs exhibit absorption and emission bands at 345?nm and 475?nm respectively, which is more longer wavelength compared to MAA-capped CdS QDs and obviously is the result of the larger particle size. The fluorescence intensity of CdS-based QDs is strongly enhanced by coating them with a shell of ZnS. In addition, such functionalised QDs are more sensitive to Hg(II) ions. Parameters such as pH, temperature and concentration of the QDs have been optimised. A high selectivity and sensitivity toward Hg(II) ions is obtained at pH 7.4 and a concentration of 12.0?mg of QDs per L. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs is linearly proportional to the concentration of Hg(II) in the range from 2.5 to 280?nM, with a detection limit of 2.2?nM. The effect of potentially interfering cations was examined and confirmed the high selectivity of this material.
Figure
Water soluble Mercaptoacetic acid (MAA)-capped CdS/ZnS core-shell quantum dots (QDs) was synthesised and characterised by using the UV-Visible absorption spectroscopy, Fluorescence spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM). These functionalised QDs are used as fluorescence probe for the determination of Hg(II) ions, based on the fluorescence quenching of QDs. A high optical selectivity and sensitivity toward Hg(II) ions was obtained at pH 7.4 of Tris–HCl buffer with a QDs concentration of 12.0?mgL?1. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs was linearly proportional to mercury ions concentration in the range 0.025?×?10?7 to 2.8?×?10?7?M with a detection limit of 2.2?×?10?9?M. The effect of common foreign ions on the fluorescence of the QDs was examined which confirmed high selectivity of this material towards Hg(II) ions. Measurements of real samples also give satisfactory results which were in good agreement with those obtained using Atomic Absorption Spectroscopy. Therefore, these QDs are not only sensitive and of low cost, but also can be reliable for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号