首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
This work reported a one-step encapsulation of indocyanine green (ICG) in ZIF-8 nanoparticles (NPs), which possess an absorption band in the near infrared region and have the good photothermal conversion efficiency. The in vivo and in vitro studies show that, after loading DOX, ICG@ZIF-8-DOX NPs exhibit the chem-band photothermal synergistic therapy for tumor.  相似文献   

2.
《中国化学快报》2023,34(3):107607
Efficient determination of tumor exosomes using portable devices is crucial for the establishment of facile and convenient early cancer diagnostic methods. However, it is still challenging to effectively amplify the detection signal to achieve tumor exosomes detection with high sensitivity by portable devices. To address this issue, we developed a portable multi-amplified temperature sensing strategy for highly sensitive detecting tumor exosomes based on multifunctional manganese dioxide/IR780 nanosheets (MnO2/IR780 NSs) nanozyme with high oxidase-like activity and enhanced photothermal performance. Inspiringly, MnO2/IR780 NSs were synthesized via a facile one-step method with mild experimental conditions, which not only exhibited a stronger photothermal effect than that of MnO2 but also showed excellent oxidase-like activity that can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to generate TMB oxide (oxTMB) with a robust photothermal property, thus conjoining with MnO2/IR780 NSs to further enhance the temperature signal. The present assay enables highly sensitive determination of tumor exosomes with the detection limit down to 5.1 × 103 particles/mL, which was comparable or superior to those of the most previously reported sensors. Furthermore, detection of tumor exosomes spiked in biological samples was successfully realized. More importantly, our method showed the recommendable portability, robust applicability, and easy manipulation. By taking advantages of these features, this high-performance photothermal sensor offered a promising alternative means for nondestructive early cancer diagnosis and treatment efficacy evaluation.  相似文献   

3.
The two‐dimensional (2D) vanadium carbide (V2C) MXene has shown great potential as a photothermal agent (PTA) for photothermal therapy (PTT). However, the use of V2C in PTT is limited by the harsh synthesis condition and low photothermal conversion efficiency (PTCE). Herein, we report a completely different green delamination method using algae extraction to intercalate and delaminate V2AlC to produce mass V2C nanosheets (NSs) with a high yield (90 %). The resulting V2C NSs demonstrated good structural integrity and remarkably high absorption in near infrared (NIR) region with a PTCE as high as 48 %. Systemic in vitro and in vivo studies demonstrate that the V2C NSs can serve as efficient PTA for photoacoustic (PA) and magnetic resonance imaging (MRI)‐guided PTT of cancer. This work provides a cost‐effective, environment‐friendly, and high‐yielding disassembly approach of MAX, opening a new avenue to develop MXenes with desirable properties for a myriad of applications.  相似文献   

4.
The two-dimensional (2D) vanadium carbide (V2C) MXene has shown great potential as a photothermal agent (PTA) for photothermal therapy (PTT). However, the use of V2C in PTT is limited by the harsh synthesis condition and low photothermal conversion efficiency (PTCE). Herein, we report a completely different green delamination method using algae extraction to intercalate and delaminate V2AlC to produce mass V2C nanosheets (NSs) with a high yield (90 %). The resulting V2C NSs demonstrated good structural integrity and remarkably high absorption in near infrared (NIR) region with a PTCE as high as 48 %. Systemic in vitro and in vivo studies demonstrate that the V2C NSs can serve as efficient PTA for photoacoustic (PA) and magnetic resonance imaging (MRI)-guided PTT of cancer. This work provides a cost-effective, environment-friendly, and high-yielding disassembly approach of MAX, opening a new avenue to develop MXenes with desirable properties for a myriad of applications.  相似文献   

5.
The development of biodegradable inorganic nanoparticles with a tumor microenvironment‐activated therapeutic mode of action is urgently needed for precision cancer medicine. Herein, the synthesis of ultrathin lanthanide nanoscrolls (Gd2O3 NSs) is reported, which biodegrade upon encountering the tumor microenvironment. The Gd2O3 NSs showed highly controlled magnetic properties, which enabled their high‐resolution magnetic resonance imaging (MRI). Importantly, Gd2O3 NSs degrade in a pH‐responsive manner and selectively penetrate tumor tissue, enabling the targeted release of anti‐cancer drugs. Gd2O3 NSs can be efficiently loaded with an anti‐cancer drug (DOX, 80 %) and significantly inhibit tumor growth with negligible cellular and tissue toxicity both in vitro and in vivo. This study may provide a novel strategy to design tumor microenvironment‐responsive inorganic nanomaterials for biocompatible bioimaging and biodegradation‐enhanced cancer therapy.  相似文献   

6.
The development of biodegradable inorganic nanoparticles with a tumor microenvironment‐activated therapeutic mode of action is urgently needed for precision cancer medicine. Herein, the synthesis of ultrathin lanthanide nanoscrolls (Gd2O3 NSs) is reported, which biodegrade upon encountering the tumor microenvironment. The Gd2O3 NSs showed highly controlled magnetic properties, which enabled their high‐resolution magnetic resonance imaging (MRI). Importantly, Gd2O3 NSs degrade in a pH‐responsive manner and selectively penetrate tumor tissue, enabling the targeted release of anti‐cancer drugs. Gd2O3 NSs can be efficiently loaded with an anti‐cancer drug (DOX, 80 %) and significantly inhibit tumor growth with negligible cellular and tissue toxicity both in vitro and in vivo. This study may provide a novel strategy to design tumor microenvironment‐responsive inorganic nanomaterials for biocompatible bioimaging and biodegradation‐enhanced cancer therapy.  相似文献   

7.
Core-shell nanostructures of silicon oxide@noble metal have drawn a lot of interest due to their distinctive characteristics and minimal toxicity with remarkable biocompatibility. Due to the unique property of localized surface plasmon resonance (LSPR), plasmonic nanoparticles are being used as surface-enhanced Raman scattering (SERS) based detection of pollutants and photothermal (PT) agents in cancer therapy. Herein, we demonstrate the synthesis of multifunctional silica core – Au nanostars shell (SiO2@Au NSs) nanostructures using surfactant free aqueous phase method. The SERS performance of the as-synthesized anisotropic core-shell NSs was examined using Rhodamine B (RhB) dye as a Raman probe and resulted in strong enhancement factor of 1.37×106. Furthermore, SiO2@Au NSs were also employed for PT killing of breast cancer cells and they exhibited a concentration-dependent increase in the photothermal effect. The SiO2@Au NSs show remarkable photothermal conversion efficiency of up to 72 % which is unprecedented. As an outcome, our synthesized NIR active SiO2@Au NSs are of pivotal importance to have their dual applications in SERS enhancement and PT effect.  相似文献   

8.
We have rationally designed a new theranostic agent by coating near‐infrared (NIR) light‐absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2) core–shell NPs. Meanwhile, DOX‐loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual‐sensitive drug delivery vehicles were employed for fluorescence imaging and chemo‐photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo‐photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH‐stimuli responsive PPY‐based multifunctional platform for cancer theranostics.  相似文献   

9.
Phototherapy holds great promise for disease treatment; however, traditional “always-on” photoagents have been restricted to clinical translation due to their nonspecific response and side effects on normal tissues. Here, we show a tumor microenvironment activated photothermal and photoacoustic agent as an activatable prodrug and probe that allows precise cancer diagnosis and treatment. Such an in situ revitalized therapeutic and contrast agent is achieved via controllable plasmonic heating for thermoplasmonic activation. This enables monitoring of signal molecule dynamics, real-time photothermal and photoacoustic imaging of tumors and lymph node metastasis, and targeted photothermal therapy without unwanted phototoxicity to normal tissues. Our study provides a practical solution to the non-specificity problem in phototherapy and offers precision cancer therapeutic and theranostic strategies. This work may advance the development of ultrasensitive disease diagnosis and precision medicine.

A tumor microenvironment-activated photoagent is reported for precise photothermal therapy and photoacoustic imaging via controllable thermoplasmonics. The agent can sensitively image tumors and lymph node metastasis and specifically ablate tumors.  相似文献   

10.
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy. However, traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties, as it results in complicated synthesis process, inefficient photothermal effects and hindered NIR-mediated drug release. Herein we report a facile synthesis of a polyethylene glycol (PEG) linked liposome (PEG-liposomes) coated doxorubicin (DOX)-loaded ordered mesoporous carbon (OMC) nanocomponents (PEG-LIP@OMC/DOX) by simply sonicating DOX and OMC in PEG-liposomes suspensions. The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size (600±15 nm), a negative surface potential (-36.70 mV), high drug loading (131.590 mg/g OMC), and excellent photothermal properties. The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells (MCF-7) and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity, confirming the PEG-LIP@OMC itself has excellent biocompatibility. The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release. Furthermore, cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemotherapy can provide higher therapeutic efficacy than respective monotherapies. With these excellent features, we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.  相似文献   

11.
《中国化学快报》2020,31(12):3121-3126
Combination therapy such as photothermal therapy (PTT) enhanced chemotherapy is regarded as a promising strategy for cancer treatment. Herein, we developed redox-responsive polymeric vesicles based on the amphiphilic triblock copolymer PCL-ss-PEG-ss-PCL. To avoid the limited therapeutic effect of chemotherapeutic drugs caused by systemic exposures and drug resistance, the redox-sensitive polymeric vesicles were cargoed with two chemotherapeutics: doxorubicin (DOX) and paclitaxel (PTX). Besides, indocyanine green (ICG) was encapsulated, and cell-penetrating peptides and LHRH targeting molecule were modified on the surface of polymeric vesicles. The results indicated that the polymeric vesicles can load different kinds of drugs with high drug loading content, trigger drug release in responsive to the reductive environment, realize high cellular uptake via dual peptides and laser irradiation, and achieve higher cytotoxicity via chemo-photothermal combination therapy. Hence, the redox-responsive LHRH/TAT dual peptides-conjugated PTX/DOX/ICG co-loaded polymeric micelles exhibited great potential in tumor-targeting and chemo-photothermal therapy.  相似文献   

12.
《中国化学快报》2020,31(12):3158-3162
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy. However, traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties, as it results in complicated synthesis process, inefficient photothermal effects and hindered NIR-mediated drug release. Herein we report a facile synthesis of a polyethylene glycol (PEG) linked liposome (PEG-liposomes) coated doxorubicin (DOX)-loaded ordered mesoporous carbon (OMC) nanocomponents (PEG-LIP@OMC/DOX) by simply sonicating DOX and OMC in PEG-liposomes suspensions. The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size (600 ± 15 nm), a negative surface potential (−36.70 mV), high drug loading (131.590 mg/g OMC), and excellent photothermal properties. The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells (MCF-7) and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity, confirming the PEG-LIP@OMC itself has excellent biocompatibility. The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release. Furthermore, cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemotherapy can provide higher therapeutic efficacy than respective monotherapies. With these excellent features, we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.  相似文献   

13.
《中国化学快报》2020,31(5):1178-1182
Cancer therapy with nanoscale drug formulations has made significant progress in the past few decades. However, the selective accumulation and release of therapeutic agents in the lesion sites are still great challenges. To this end, we developed a cRGD-decorated pH-responsive polyion complex (PIC) micelle for intracellular targeted delivery of doxorubicin (DOX) to upregulate tumor inhibition and reduce toxicity. The PIC micelle was self-assembled via the electrostatic interaction between the positively charged cRGD-modified poly(ethylene glycol)-block-poly(l-lysine) and the anionic acid-sensitive 2,3-dimethylmaleic anhydride-modified doxorubicin (DAD). The decoration of cRGD enhanced the cell internalization of PIC micelle through the specific recognition of αvβ3 integrin on the membrane of tumor cells. The active DOX was released under intracellular acidic microenvironment after endocytosis following the decomposition of DAD. Moreover, the targeted PIC micelle exhibited enhanced inhibition efficacies toward hepatoma in vitro and in vivo compared with the insensitive controls. The smart multifunctional micelle provides a promising platform for target intracellular delivery of therapeutic agent in cancer therapy.  相似文献   

14.
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron–hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.

A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy (PTT/PDT) of hypoxic tumors in the NIR-II window.  相似文献   

15.
Gold nanostars(Au NSs) are asymmetric anisotropic nanomaterials with sharp edge structure. As a promising branched nanomaterial, Au NS has excellent plasmonic absorption and scattering properties. In order to tune the plasmonic photothermal and surface-enhanced Raman scattering(SERS) activity of Au NSs to obtain the desired characteristics, the effects of reagents on the local surface plasmon resonance(LSPR) bands of Au NSs were studied and the morphology and size were regulated. Nanoparticles with different sharp edges were synthesized to make their local plasmon resonance mode tunable in the visible and near-infrared region. The effects of the number and sharpness of different tips under the control of AgNO3 on the photothermal response of Au NSs and the SERS activity and their mechanism were discussed in detail. The results show that as the length of the branch tip becomes longer and the sharpness increases, the plasmonic photothermal effect of Au NSs is strengthened, and the photothermal conversion efficiency is the highest up to 40% when the length of Au NSs is the longest. Au NSs with high SERS activity are used for the Raman detection substrate. Based on this property, the quantitative detection of the pesticide thiram is achieved.  相似文献   

16.
Developing selectively targeted photothermal agents to reduce side effects in photothermal therapy remains a great challenge. Inspired by the key role of endoplasmic reticulum in the protein synthesis and intracellular signal transduction, particularly for the immunogenic cell death induced by endoplasmic reticulum stress, we developed an endoplasmic reticulum-targeted organic photothermal agent(Ts-PTRGD) for enhancing photothermal therapy of tumor. The photothermal agent was covalently attached...  相似文献   

17.
Photothermal therapy(PTT) induces thermoresistance through cellular heat shock response, which impairs the therapeutic efficacy of the PTT. To resolve this problem, we developed a photothermal theranostics(denoted as PMH), which integrated the photothermal conversion agent of PdMo bimetallene with histone deacetylase 6(HDAC6) selected inhibitor(ACY-1215), showing the synergistic antitumor effect both in vitro and in vivo. Mechanistically, under the photoacoustic imaging(PA) navigation, the relea...  相似文献   

18.
《中国化学快报》2023,34(3):107577
Nitric oxide (NO) gas therapy has been regarded as a promising strategy for cancer treatment. However, its therapeutic efficiency is still unsatisfying due to the limitations of monotherapy. Previous preclinical and clinical studies have shown that combination therapy could significantly enhance therapeutic efficiency. Herein, a graphene oxide (GO)-l-arginine (l-Arg, a natural NO donor) hybrid nanogenerator is developed followed by surface functionalization of soybean lecithin (SL) for synergistic enhancement of cancer treatment through photothermal and gas therapy. The resultant GO-Arg-SL nanogenerator not only exhibited good biocompatibility and excellent endocytosis ability, but also exhibited excellent photothermal conversion capability and high sensitivity to release NO within tumor microenvironment via inducible NO synthase (iNOS) catalyzation. Moreover, the produced hyperthermia and intracellular NO could synergistically kill cancer cells both in vitro and in vivo. More importantly, this nanogenerator can efficiently eliminate tumor while inhibiting the tumor recurrence because of the immunogenic cell death (ICD) elicited by NIR laser-triggered hyperthermia and the immune response activation by massive NO generation. We envision that the GO-Arg-SL nanogenerator could provide a potential strategy for synergistic photothermal and gas therapy.  相似文献   

19.
Although linker‐free Au nanoparticle superstructures (AuNPSTs) have demonstrated to have satisfactory photothermal conversion efficiency owing to their enhanced visible‐near‐infrared absorption caused by the interparticle coupling, they cannot be used directly for in vivo photothermal therapy (PTT) of cancer because of poor stability. To address this issue, we herein propose a polymer‐coating strategy, dressing AuNPST on a poly(dopamine) (PDA) coat, and successfully investigate the in vivo PTT effect of AuNPSTs. By employing Triton X‐100 as an emulsifier for the formation of AuNPSTs, dopamine was site‐specifically polymerized around each AuNPST by the interaction between ?OH of Triton X‐100 and ?NH2 of dopamine. As‐fabricated AuNPST/PDA has a sphere‐like shape with an average diameter of ~106 nm and the PDA shell is about 10 nm PDA thick. The AuNPST/PDA shows enhanced durability to heat, acid, and alkali compared with bare AuNPST. Also, under 808 nm laser irradiation, AuNPST/PDA shows photothermal conversion efficiency of ~33%, higher than bare AuNPST (~23%). Significantly, AuNPST/PDA can be used as in‐vitro and in‐vivo PTT agent and shows excellent therapeutic efficacy for tumor ablation thanks to its enhanced stability and biocompatibility, indicative of its potential practicability in clinical PTT.  相似文献   

20.
A combination of chemo‐ and photothermal therapy has emerged as a promising tactic for cancer therapy. However, the intricacy of accurate delivery and the ability to initiate drug release in specific tumor sites remains a challenging puzzle. Hence, to assure that the chemotherapeutic drug and photothermal agent are synchronously delivered to a tumor area for their synergistic effect, dual‐target (RC‐12 and PG‐6 peptides) functionalized selenium nanoparticles loaded with both doxorubicin (DOX) and indocyanine green (ICG) were designed and successfully synthesized. The as‐synthesized nanoparticles exhibited good monodispersity, size stability, and consistent spectral characteristics compared with those of ICG or DOX alone. The nanoparticles underwent self‐immolated cleavage under irradiation from a near‐IR laser and released the loaded drug owing to sufficient hyperthermia. Moreover, the internalized nanoparticles triggered the overproduction of intracellular reactive oxygen species to induce cell apoptosis. Taken together, this study provides a sequentially triggered nanosystem to achieve precise drug delivery by chemo‐photothermal combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号