首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
莫艳红  李晖  王彬  徐晓慧  刘思思  曾冬冬 《应用化学》2020,37(11):1249-1261
血红素/G-四链体DNA酶是一类具有类过氧化物酶活性的DNA分子,因其具有出色的活性、易修饰性和可编程性,被广泛应用于生物传感器等领域。 本文先是简要介绍了G-四链体的结构,再主要综述了增强血红素/G-四链体DNA酶活性的策略及基于血红素/G-四链体DNA酶的生物传感器在生物标志物、微生物与生物毒素以及金属离子检测中的应用,并展望了血红素/G-四链体DNA酶的未来发展趋势。  相似文献   

2.
徐静  孔德明 《分析化学》2012,(3):347-353
G-四链体DNA酶是由核酸G-四链体与氯化血红素(Hemin)结合后形成的一种具有过氧化物酶活性的人工酶,利用这种DNA酶,可进行多种化学及生物传感器的设计。为提高G-四链体DNA酶类Hg2+传感器的选择性,本研究在传感器的设计过程中引入了分子内裂分G-四链体,即将形成G-四链体的富G序列拆分成两部分,分别放置在Hg2+探测序列的两端。在无Hg2+存在时,部分富G序列被包埋在某一分子内二倍体结构中,无法形成G-四链体。而在Hg2+存在下,Hg2+对T-T碱基错配的稳定能力可以促使Hg2+探测序列形成分子内二倍体结构,并伴随着原有分子间二倍体结构的破坏及分子内裂分G-四链体的生成。利用生成的裂分G-四链体与Hemin作用后检测体系酶活性的提高,实现Hg2+传感器的设计。利用该传感器,可在50~500 nmol/L及2.0~7.5μmol/L两个浓度范围内实现Hg2+的定量检测,检出限为47 nmol/L。由于裂分G-四链体DNA酶的使用强化了传感器对Hg2+的依赖性,极大地提高了设计的Hg2+传感器的选择性。对实际水样的加标回收结果显示,回收率为97.5%~104.5%,证明此传感器可以满足实际水样中痕量Hg2+的分析要求。  相似文献   

3.
将富鸟嘌呤(G)序列核酸适配体与门控制效应相结合,通过控制门的开关实现信号放大,构建了新型电化学生物传感器,用于铅离子(Pb2+)的高灵敏检测。首先将单-6-巯基-β-环糊精(6-SH-β-CD)自组装在金电极上,形成有序排列的分子自组装膜,且分子之间留有空隙,可作为探针通过的门结构。随后将发夹结构的富含 G 序列的核酸适配体修饰在环糊精次面端口,制得可特异性识别 Pb2+的电化学生物传感器。富 G 序列适配体结合 Pb2+后可折叠形成 G-四联体结构(G4-Pb2+),覆盖住电极表面的探针通道,产生关门效应,使探针氧化还原电流强度减小,进而形成门控制效应,利用该效应可进行 Pb2+的定量检测。门控制效应显著提高了信噪比和检测的灵敏度,在1×10-13~5×10-11 mol/ L 浓度范围内,Pb2+浓度的负对数与 DPV 响应电流呈良好的线性关系,检出限为3.6×10-14 mol/ L(DL=3δb / K)。传感器用于实际水样品中 Pb2+的测定,结果令人满意。  相似文献   

4.
缪金伟 《化学通报》2023,86(3):278-283
食品污染物不仅对人类健康造成了严重威胁,还会给食品工业造成巨大的经济损失。G-四链体(G4)是由鸟嘌呤的碱基配对形成的核酸三维二级结构,具有灵活的绑定能力,已成为生物传感器的重要组成部分。将G4与生物传感器结合用于食品中污染物的检测得到了广泛的应用。本文对G4进行了简介,综述了2015~2022年间G4在食品污染物检测中的研究进展,并对其未来的发展趋势进行了展望。  相似文献   

5.
开发了一种无标记和快速的检测方法基于氧化石墨烯(GO)和荧光功能性G-四聚体探针(FGP),可用于定量检测氯霉素(CAP).FGP由氯霉素核酸适配体和富含G碱基的核酸序列组成.核酸适配体用于结合CAP,并且由富含G碱基的核酸序列在K+,Na+离子的作用下形成的G-四聚体,然后与硫磺素T(ThT)结合后用作信号分子.在没有CAP的情况下,FGP通过π-π堆积相互作用被吸附到GO的表面上,阻碍了G-四聚体的形成导致溶液中的荧光强度低.在加入CAP时,FGP的核酸适配体部分可识别并结合CAP以形成复合物,导致其从GO解吸.因此,游离的富含G的碱基序列可以形成G-四聚体结构并与ThT结合,导致溶液的荧光强度增加.我们观察到荧光强度增加与CAP浓度在2~20 nmol/L范围内呈线性关系,检测限为1.45 nmol/L.此外,该检测系统用于检测加标牛奶中的CAP,回收率在93.2%~103.3%之间.这些结果表明,开发的方法可用于有效检测实际样品中的CAP.  相似文献   

6.
G-四链体是由具有连续鸟嘌呤(G)序列的DNA或RNA形成的一种特殊的核酸二级结构,由于有望形成G-四链体结构的序列广泛地分布于人类基因组的许多重要区域,有关G-四链体的研究已经成为国际上的一个研究热点。本文对G-四链体构型的多态性、G-四链体热稳定性的测试手段及G-四链体在K+定量检测方面的应用研究进行了简单的介绍和评述。  相似文献   

7.
DNA G-四链体识别探针研究进展   总被引:1,自引:0,他引:1  
G-四链体是一种由富含鸟嘌呤核酸序列形成的独特的二级结构,广泛分布于真核生物基因组,如端粒DNA、r DNA和一系列基因中的启动子区域。G-四链体结构对很多重要的生理过程如基因的转录、复制、重组以及保持染色体的稳定性方面具有重要作用。G-四链体的特异、高灵敏检测将为进一步了解G-四链体结构在人类细胞基因组中的分布、功能和机制奠定基础,也可能为靶向G-四链体的肿瘤治疗方法提供新的思路。因而过去几十年人们一直致力于开发设计具有高选择性和高灵敏度的G-四链体识别探针,这些探针已经广泛应用于溶液中G-四链体的识别,而且具有良好的选择性。目前也有少数探针能够直接用于检测活体G-四链体结构。本文综述了一些常见的靶向G-四链体的小分子配体,以及它们在染色体和活体细胞G-四链体检测中的应用。笔者希冀本文能为设计识别G-四链体的高性能探针,进一步实现活细胞内G-四链体的检测提供借鉴。  相似文献   

8.
该文以特殊设计的DNA序列为捕获探针,以G-四链体-血红素复合物作为信号分子,利用链式反应实现目标DNA的灵敏检测。在目标DNA存在时,捕获探针与目标DNA相互识别,同时目标DNA能与辅助探针发生连续的链式反应,从而在电极表面引入大量G-四链体结构。血红素存在下,G-四链体可与血红素结合形成具有很强电化学信号的G-四链体-血红素复合物。用差分脉冲伏安法(DPV)扫描得到的电化学信号与体系中的目标DNA浓度存在对应关系,从而实现对目标DNA的检测。在各组分浓度最适的情况下,电流响应值与目标DNA浓度在0.01~10 pmol/L内具有良好的线性关系,检出限可达8 fmol/L。该传感器灵敏度高、特异性好,具有良好的应用前景。  相似文献   

9.
《分析试验室》2021,40(5):605-612
DNA电化学生物传感器是一类以DNA为敏感元件或检测对象,将核酸分子特异性识别过程中产生的信号通过换能器转化为电信号,从而实现对目标物定性或定量检测的传感器,具有响应速度快、操作简单、选择性好、灵敏度高、检测成本低等优点,实现了多领域中重金属、真菌毒素、核酸等的快速实时检测。介绍了DNA电化学生物传感器的组装单元、电化学指示剂类型,以DNA二级构型角度综述了DNA电化学生物传感器的四大类特殊结构,并汇总其在临床、中医药、生态环境保护及食品安全等领域中重金属的检测应用研究,对新型DNA电化学生物传感器的设计与其在更多领域的拓展应用提供借鉴价值。  相似文献   

10.
富含鸟嘌呤的DNA或RNA序列可以折叠成非典型G-四链体二级结构. G-四链体结构丰富多样,在生物体内动态存在,参与了转录、复制、基因组稳定性和表观遗传调控等关键的基因组功能,与癌症生物学密切相关. G-四链体的结构与功能机制研究促进了以G-四链体为靶点的肿瘤治疗干预.本文综合评述了核酸G-四链体的特异性识别、细胞内探测及生物学功能的调控,总结了识别靶向G-四链体的小分子及复合物结构的研究进展,讨论了以G-四链体为靶点的靶向干预及疾病治疗的可能性,最后展望了G-四链体未来研究所面临的挑战与机遇.  相似文献   

11.
基于特殊DNA序列的构型变化的电化学生物传感器是一种高灵敏、高特异性的生物分析方法.固定在电极表面的特殊DNA探针(茎环、核酸适配体、四聚体等)因为目标物质的结合而发生构型变化,从而产生可检测的电化学信号,这种策略操作简便而且特异性强,引起了研究者的广泛关注.本文总结了目前基于基因构型变化的电化学生物传感器的发展历程.  相似文献   

12.
李晓璐  郭晶  翟倩  易钢 《化学通报》2016,79(12):1127-1133
生物分子检测在临床诊断、基因治疗、基因突变分析等方面变得日益重要,因而,建立简单、快速、灵敏的检测方法具有重要意义。近年,电化学生物传感器因其简单、便携、易操作、成本低等优势在生物分子检测的研究中备受关注。为了提高检测方法的灵敏度,不同的核酸等温扩增技术被应用于电化学生物传感器的构建中。本文简单介绍了电化学生物传感器的工作原理,着重综述了几种主要应用于电化学传感器中的核酸等温扩增技术,同时比较了各方法的优缺点。  相似文献   

13.
CRISPR-Cas12a是一种功能强大且可编程的分子诊断技术。本文基于CRISPR-Cas12a的附属切割活性与G-四链体/氯化血红素(Hemin)复合物,设计了一个免标记电化学生物传感器,实现对miRNA的强特异性检测。靶标miRNA-21与双链DNA探针上的Toehold区域结合并发生链置换反应,置换出双链DNA探针中较短的DNA。置换下来的DNA可以有效地激活CRISPR-Cas12a的附属切割活性。随后,具有附属切割活性的Cas12a切割电极表面上形成G-四链体/Hemin的DNA序列,导致电流信号减弱。在最优条件下,电流信号强度变化与10~100 pmol/L范围内的miRNA-21浓度呈良好的线性关系,检出限为4.2 pmol/L。该电化学生物传感器能够实现对单个碱基突变的miRNA-21或其它miRNA序列特异性识别,并可用于人血清样本(10%)中miRNA-21的检测。  相似文献   

14.
孔德明 《化学进展》2011,23(10):2119-2131
G-四链体-氯化血红素(hemin)DNA酶是一种由特定的核酸G-四链体与hemin结合后形成的具有过氧化物酶活性的人工模拟酶。作为一类重要的DNA酶,G-四链体-hemin DNA酶近年来在分析化学领域受到了越来越多的关注。目前这类DNA酶已被用在了多种传感器,包括金属离子传感器、适配体传感器、酶传感器、DNA传感器及药物传感器的设计当中。本文对G-四链体-hemin DNA酶在传感器设计中的应用进行了系统的介绍和评述,并对其未来的发展进行了初步的展望。  相似文献   

15.
高艾  王玉茹  何锡文  尹学博 《分析化学》2012,40(10):1471-1476
利用多巴胺的氧化自聚实现对G-四联体/血红素DNA酶的包埋,成功构建了H2O2电化学生物传感器。DNA和血红素混合得到G-四联体/血红素复合物;DNA酶物理吸附在玻碳电极上后,将10μL 5 g/L多巴胺的磷酸盐缓冲液(pH 8.0)滴在表面,空气中的氧气氧化多巴胺形成聚多巴胺膜,实现DNA酶的固定。考察了不同DNA序列对传感器性能的影响,表明电化学与光学传感过程具有不同序列响应。此传感器对H2O2的检出限为2.2μmol/L;线性范围为0.01~1.5 mmol/L。本研究证实了利用聚多巴胺固定酶和用DNA酶代替天然酶构筑传感器的可行性。  相似文献   

16.
病毒依赖宿主细胞完成生命周期,影响着地球上所有生物,是人类疾病的主要原因之一,对人类健康以及社会经济造成严重影响,因此开发检测病毒的工具对防治病毒感染和预防病毒导致的疾病具有重要意义.病毒基因组在病毒的生命周期中发挥着重要作用,为病毒检测提供了有效靶点.G-四链体(G4)是由富含鸟嘌呤的核酸折叠形成的一种稳定的核酸二级...  相似文献   

17.
段娜娜  王娜  杨薇  孔德明 《分析化学》2014,42(10):1414-1420
对鸟嘌呤碱基G重复序列之间连接环结构对G-四链体形成的影响进行了研究。发现在连接环较长,DNA链不易形成G-四链体的情况下,可以通过将环序列设计成双链结构的方式促进G-四链体的重新形成。这就为传感器的设计提供了一个新途径,即可以利用目标分子对环部双链的调节作用控制G-四链体DNA酶的活性。为证明这一点,在双链区域引入T-T碱基错配,破坏双链结构使DNA链不能形成G-四链体。Hg2+对T-T错配的稳定作用可以促进双链结构的形成,DNA链重新折叠成G-四链体,得到的G-四链体与氯化血红素(Hemin)结合后形成具有过氧化物酶活性的G-四链体DNA酶,据此构建了Hg2+传感器。利用此传感器可在10~700 nmol/L范围内实现Hg2+的定量检测,检出限为8.7 nmol/L。在此基础上,利用半胱氨酸可以将Hg2+从T-Hg2+-T碱基对上竞争下来的能力,设计了一种半胱氨酸的检测方法。此方法可以在20~600 nmol/L范围内实现半胱氨酸的定量检测,检出限为14 nmol/L。  相似文献   

18.
G-四链体是由富含鸟嘌呤(G)的核酸通过π-π堆积形成的核酸二级结构。前期研究发现,G-四链体DNA对肿瘤细胞具有普遍识别和结合能力,且具有如抗肿瘤增殖等生物学活性,但G-四链体DNA的结构对其识别和结合肿瘤细胞的能力的影响还未见报道。本文采用圆二色光谱和凝胶电泳对不同连接环(loop)长度G-四链体DNA的结构和稳定性进行了研究,利用流式细胞术和激光共聚焦显微成像技术,研究了G-四链体DNA的连接环(loop)长度在其与肿瘤细胞结合中的作用。结果表明,loop长度越短的G-四链体DNA越易形成平行结构,识别和结合肿瘤细胞的能力越强,也更容易被细胞摄取;loop长度长的G-四链体DNA倾向于形成混合平行结构,这类G-四链体DNA识别和结合肿瘤细胞的能力较弱。  相似文献   

19.
具有特定构象的富G序列(如G-四链体和G-三链体)与荧光染料相互作用可有效增强其荧光信号强度,被广泛应用于构建无标记荧光生物传感。本研究以硫磺素T(Thioflavin T, ThT)为荧光染料,构建了两种基于富G序列的无标记荧光传感器,用于检测阿尔兹海默病标志物β-淀粉样蛋白(β-Amyloid protein, Aβ)的基因序列。实验结果表明,分子发夹茎长为4个碱基时,富G序列以G-三链体的结构存在,以此构建的G-三链体传感器的输出信号随Aβ基因浓度增加而降低,线性检测范围为1~100 nmol/L,检出限为0.3 nmol/L(S/N=3)。分子发夹茎长为8个碱基且5′端添加碱基AATT时,其与Aβ基因结合后,富G序列多以G-四链体结构存在,以此构建的G-四链体传感器的输出信号随Aβ基因浓度增加而增强,线性检测范围为0.1~100 nmol/L,检出限为0.04 nmol/L (S/N=3)。两种传感器制备过程相似但检测原理不同,为富G序列的深入研究与应用提供了参考,同时为单链核酸的无标记荧光检测提供了新的思路。  相似文献   

20.
核酸是一种十分重要的生物大分子,有关核酸分析的研究一直是生物分析中非常活跃的领域。电化学发光(ECL)技术具备灵敏度高、可控性强、选择性高等优点,广泛应用于生物分析领域。量子点(QDs)具有优异的光学特性和良好的电化学性能。量子点独特的光电特性可与电化学发光相结合,构建灵敏度高、特异性强及检出限低的电化学发光生物传感器用于核酸分析。本文简要地介绍了量子点并对其进行系统的分类,重点介绍了量子点作为发光体材料在电化学发光核酸分析传感器中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号