首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Crystallization of calcium carbonate (CaCO3) crystals by a gas‐liquid diffusion method has been carried out in aqueous solution using a double‐hydrophilic block copolymer (DHBC) poly(maleic anhydride)‐b‐poly(acrylic acid) (PMA‐b‐PAA). The as‐prepared products were characterized with X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), high‐resolution transmission electron microscopy (HRTEM) and infrared spectroscopic analysis (FT‐IR). Uniform one‐dimensional calcite micro/nanostructures with different morphologies are fabricated through an assembled process. The influence of PMA‐b‐PAA copolymer concentration on the morphology of calcite nano/microwires is investigated, which plays an important role in the morphological control of building blocks composed of one‐dimensional calcite crystals. The possible formation mechanism of one‐dimensional CaCO3 crystals was discussed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Novel tomato‐shaped copper oxide crystals has been prepared by a simple hydrothermal method with the presence of Zn2+ ion. The ultrasonic pretreatment has proved to be the key factor during the synthesis process. Scanning electron microscope, energy dispersive X‐ray spectrometry and powder X‐ray diffraction were used to characterize the microstructure and morphology of the as‐prepared products. The obtained tomato‐shaped CuO particles were constructed by nanorods with the diameter of about 20 nm. The possible growth mechanism was proposed based on the experimental results. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Complex CaCO3 superstructure can be easily synthesized by using poly (sodium 4‐styrenesulfonate) (PSSS) as a structure directing agent to direct the controlled precipitation of calcium carbonate from aqueous solution. The products were characterized by scanning electron microscopy (SEM), and powder X‐ray diffraction (XRD) analysis. The results revealed that the morphology of the products changed significantly with the increasing of the concentration of PSSS in solution, from rhombohedral particles to plate‐packed aggregates to spheres with smooth surface, to sponge‐like spheres and finally to complex spherical superstructure consisted of plate‐like sub‐units. We hypothesize that the observed sequential changes in morphology of CaCO3 particles with added PSSS concentration may be due to the influence of PSSS on nucleation, growth and aggregation of CaCO3 crystals. The formation mechanisms of CaCO3 crystals with different morphologies were discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Flower‐like self‐organized crystalline ZnO architectures were obtained through a facile and controlled hydrothermal process. As‐synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), electron diffraction and UV‐Vis spectroscopy. XRD and electron diffraction results confirmed the obtained materials are pure wurtzite ZnO. The effects of different ratios of starting materials and solvent on the morphologies of ZnO hydrothermal products were also evaluated by SEM observations. It is suggested that the use of water, rather than ethanol as the solvent, as well as employing a precursor of Zn(Ac)2 and 2NaOH (v/v) in hydrothermal reactions are responsible for the generation of specific flower‐like self‐assembled ZnO structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The controlled synthesis of hierarchical CuO nanomaterials in a solution phase has been realized with high yield at low temperature using copper acetate hydrate and NaOH as starting materials with the assistance of surfactant under hydrothermal conditions. X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet‐visible spectroscopy (UV‐Vis) were used to characterize the products. It was shown that the hierarchical CuO nanoarchitectures were formed through aggregation of tiny single‐crystal CuO nanorods. Experiments demonstrated that the morphology of CuO products was significantly influenced by hydrothermal temperature and reaction time. A rational growth mechanism based on oriented attachment was proposed for the selective formation of the hierarchical CuO nanoarchitectures. Our work demonstrated the growth of hierarchical CuO nanoarchitectures built from one‐dimentional nanorods through a one‐step solution‐phase chemical route under controlled conditions. In addition, The UV‐Vis spectrum of the hierarchical CuO nanoarchitectures showed large blue shift because of the quantum size effect. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Mn‐doped CuO nanosheets were prepared through a hydrothermal method to enhance their photocatalytic property. The structural and morphological features were monitored by using X‐Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS). UV‐vis absorption spectra showed the enhance absorption performance both in UV and visible light region. The band gaps were also calculate and the minimum value was 1.25 eV. The photocatalytic activity was investigated by the degradation of methylene blue (MB), which indicated that the photoactivity of samples depended on the amount of Mn2+ incorporated into the CuO lattice. The improved performance of photocatalysts can be attributed to enhanced light absorption and lower electron‐hole recombination.  相似文献   

7.
In the current paper we designed a simple glucose reduction route for synthesis of sheet‐like Cu dendrites on a high yield, using CuSO4 as the starting material. The reaction was carried out at 180 °C for 18 h in the absence of any structure‐directing agent. The product was characterized by X‐ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron diffraction (ED). Some factors influencing the shapes of Cu microcrystals, including the reaction temperature, time, and the concentration of the starting CuSO4, were investigated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Uniform capsule‐like α‐Fe2O3 particles were synthesized via a simple hydrothermal method, employing FeCl3 and CH3COONa as the precursors and sodium dodecyl sulfate (SDS) as soft template. X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and high‐resolution transmission electron microscopy were used to characterize the structure of synthesized products. Some factors influencing the formation of capsule‐like α‐Fe2O3 particles were systematically investigated, including different kinds of surfactants, the concentration of SDS, and reaction times. The investigation on the evolution formation reveals that SDS was critical to control the morphology of final products, and a possible five‐step growth mechanism was presented by tracking the structures of the products at different reaction stages.  相似文献   

9.
将固体CuSO4·5H2O和Na2CO3混合均匀后溶于适量乙醇中,然后进行微波辐照,立即反应生成泥浆状固体,将该泥浆状固体洗涤后干燥即可得到粉状前驱体.然后在600 ℃加热1 h分解该前驱体,即可制得纳米氧化铜粉体.在加热速率为10 ℃/min的条件下,对该前驱体进行表征,发现其热分解和晶体化温度约为550 ℃.对制得的纳米氧化铜粉体进行XRD、SEM、TEM和IR分析,结果表明制得的产物为纳米氧化铜粉体,其粉体粒径在30~50 nm,平均粒径约为40 nm.  相似文献   

10.
A simple and cost effective hydrothermal method has been employed to synthesis morphology controlled pure and Cr doped (4 and 8 at. %) CuO nanostructures. Crystalline purity and structure of the nanostructures were validated by X‐ray diffraction and Retvield analyses. Field emission scanning electron microscopy revealed the evolution of rod‐like, sheet‐like and boat‐like morphologies for pure, 4 and 8 at. % Cr doped CuO nanostructures respectively. The optical band gap estimated using the K‐M function plot from diffused reflectance spectroscopy showed a shift in band gap from 1.68 to 1.90 eV with respect to Cr concentration. The synthesized CuO nanostructures were investigated for the efficient room temperature gas sensing of ammonia, ethanol and methanol vapours under different concentrations (100‐600 ppm). The 8 at. % Cr doped CuO nano‐boats showed enhanced gas sensitivity than other CuO nanostructures owing to their typical morphology, larger surface area and related properties.  相似文献   

11.
Large‐scale high‐quality BaMoO4 nanocrystals have been synthesized in aqueous solutions under mild conditions with citrate as a simple additive. The crystals have bone‐like, spindle‐like and wheatear‐like morphologies assembled from nanoparticles, nanofibers and have been characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results showed that experimental parameters had great influences on the shape evolution of products. The adjustment of these parameters such as room temperature stirring time, reaction temperature and reaction time of hydrothermal reaction, can lead to obvious morphology changes of products, and the growth mechanism has been proposed. Room‐temperature photoluminescence indicated that the as‐prepared BaMoO4 nanocrystals had a strong blue emission peak at 481.5 nm. This facile route could be employed to synthesize more promising nanomaterials with interesting self‐assembly structures. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
ZnO nanostructures with various morphologies including rod‐like, sheet‐like, needle‐like and flower‐like structures were successfully synthesized via a fast and facile microwave‐assisted hydrothermal process. Reaction temperature, reaction time and the addition of NaOH were adjusted to obtain ZnO with different morphologies. Scanning electron microscopy(SEM), transmission electron microscope(TEM), X‐ray diffraction (XRD) and ultraviolet spectrophotometer (UV) were used to observe the morphology, crystal structure, ultraviolet absorption and photocatalytic activity of the obtained ZnO. The results indicated that growth rate of ZnO nanostructure along [001] direction was more sensitive to temperature compared with those along [101] and [100] directions. The competition between anionic surfactant and OH played an important role in the formation of ZnO with various morphologies. Flower‐like ZnO had better ultraviolet absorption property and excellent photocatalytic activity than ZnO in the other morphologies. On the basis of the above results, a possible growth mechanism for the formation of ZnO nanostructures with different morphologies was described.  相似文献   

13.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

14.
Cupric oxide and cuprous oxide micro‐/nanomaterials with well‐controlled sizes and morphologies have been synthesized via different crystal growth techniques. Structural and morphological characterizations of these copper oxide micro‐/nanomaterials were performed by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After that, these copper oxide micro‐/nanomaterials were used as catalysts for a typical C‐N cross‐coupling reaction directly. The catalytic results showed that different copper oxide micro‐/nanomaterials had different catalytic activities in C‐N cross‐coupling reaction. The particle size of cupric oxide and the oxidation state of copper played vital roles in the catalytic process. Cupric oxide with small particle size has the best catalytic activity, while cupric oxide with different morphologies has almost the same yields and cuprous oxide has very poor yields. Further, the possible catalytic mechanism for copper oxide nanomaterials catalyzed cross‐coupling reaction was proposed. And the influence of particle size and oxidation state was carefully discussed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this article, flower‐like CdS structures have been prepared by a hydrothermal method with SDBS as surfactant. The influences of different experimental conditions on the morphologies, UV‐Vis and fluorescence properties of CdS have been investigated. The performances of CdS have been analyzed by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet‐visible (UV–Vis) and room‐temperature photoluminescence (PL). The XRD result indicates that the flower‐like CdS structures are of hexagonal phase. The FESEM results indicate that the main role of SDBS is to make the CdS crystals assemble together to form the flower‐like structures. The UV–Vis results show CdS has a strong absorption in the ultraviolet region and visible‐light region. The PL results show CdS has two emission peaks, respectively at 461 nm and 553 nm. The growth mechanism for the formation of flower‐like CdS structures is also described.  相似文献   

16.
Large amounts of dumbbell‐like Sb2S3 microcrystals were synthesized via a simple solvothermal treatment method. Various techniques such as x‐ray diffraction (XRD), field‐emission scanning electron microscope (FESEM), high‐resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and photoluminescence spectrometry (PL) have been used to characterize the obtained products. The results showed that the products belong to the orthorhombic Sb2S3 phase, and the dumbbell‐like Sb2S3 microcrystals were composed by uniform microrods. Besides, the morphologies of Sb2S3 microcrystals could be changed from microshperes to dumbbell‐like microcrystals by only adjusting the reaction solvent. The solvent effects are discussed in detail. Furthermore, the PL properties of the obtained Sb2S3 microcrystals clearly show shape effects. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
CuO mesocrystals were synthesized by thermal decomposition of antlerite (Cu3(OH)4SO4) formed as an intermediate by the reaction between CuSO4.5H2O and urea under specific experimental conditions. Antlerite possessing spindles of sea urchin‐like morphology was obtained via controlled hydrolysis process using ethylene glycol as a co‐solvent. Antlerite and CuO mesocrystals were characterized by X‐ray diffraction (XRD), fourier transform‐infrared spectrum (FT‐IR), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). A probable mechanism for formation of such morphologies has been proposed. The photocatalytic and optical properties of CuO mesocrystals were also evaluated.  相似文献   

18.
With a facile solvothermal method, Ag@Fe3O4 nanowire was successfully prepared and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained Ag@Fe3O4 nanowire posses enhanced peroxidase‐like activity with good stability and high absorbance. The optimization of pH, H2O2 concentration and loading capacity were carried out. The result of kinetic analysis indicates that the catalyzed reaction followed a Michaelis‐Menten behavior. The good peroxidase‐like activity makes Ag@Fe3O4 nanowire be promising for real application in biomedicine.  相似文献   

19.
A zinc oxide (ZnO) nanoarray (rod‐like nanostructure) was successfully synthesized through a low‐temperature aqueous solution and microwave‐assisted synthesis using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA) as raw materials, and using FTO glass as substrate. The effects of parameters in the preparation process, such as solution concentration, reaction temperature and microwave power, on the morphology and microstructure of ZnO nanoarray were studied. Phase structure and morphology of the products were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that hexagonal wurtzite structure ZnO nanoarray with good crystallization could be prepared through a low‐temperature solution method. When the concentration of the mixed solution was 0.05 M, the reaction temperature was 95 °C, and the reaction time was 4 h, high‐density ZnO regular nanorods of 200 nm diameter were obtained. A possible mechanism with different synthesis methods and the influence of microwave processing are also proposed in this paper.  相似文献   

20.
Large‐scale star‐like PbWO4 hierarchical architectures were controllably synthesized by a facile surfactant‐assisted technology under mild conditions in the presence of a mixed solvent of ethylene glycol and water. The morphology, structure, and phase composition of PbWO4 architectures were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), field emission transmission electron microscopy (FE‐TEM), and nitrogen adsorption‐desorption isotherms. The possible formation mechanism of the star‐like PbWO4 architectures (initial nucleating stage and a subsequent self‐assembly stage) was proposed based on the observations from a time‐dependent morphology evolution process, which may pave the way to shape‐controlled synthesis of inorganic nanocrystals with the complex structures. This route provides a facile strategy to fabricate complex hierarchical PbWO4 structures. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号