首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A bis(disulfide)-bridged RuMo3S4 double-cubane cluster [{(Cp*Mo)3(mu3-S)4Ru}(mu2-eta2:eta1-S2)]2[PF6]2 (2, Cp* = eta5-C5Me5) is readily available from cluster [(Cp*Mo)3(mu3-S)4RuH2(PPh3)][PF6] (1) and S8. The reactions of cluster 2 with [M(PPh3)4] (M = Pd, Pt) give rise to the formation of a new family of nona- or decanuclear mixed-metal sulfide clusters, [{(Cp*Mo)3(mu3-S)4Ru}2(mu3-S)2{Pd(S)(PPh3)}][PF6]2 (3), [{(Cp*Mo)3(mu3-S)4Ru}2(mu3-S)2{(Pd(PPh3))2(mu2-S)}][PF6]2 (4), and [{(Cp*Mo)3(mu3-S)4Ru}2(mu3-S)2{Pt(PPh3)2}][PF6]2 (5), with two RuMo3S4 cubane units, the structures of which have been determined by X-ray diffraction studies.  相似文献   

2.
Dirhodium amido complexes [(Cp*Rh)2(mu2-NHPh)(mu2-X)] (X = NHPh (2), Cl (3), OMe (4); Cp* = eta5-C5Me5) were prepared by chloride displacement of [Cp*Rh(mu2-Cl)]2 (1) and have been used as precursors to a dirhodium imido species [Cp*Rh(mu2-NPh)RhCp*]. The imido species can be trapped by PMe3 to give the adduct [Cp*Rh(mu2-NPh)Rh(PMe3)Cp*] (5) and undergoes a formal [2 + 2] cycloaddition reaction with unactivated alkynes to give the azametallacycles [Cp*Rh(mu2-eta2:eta3-R1CCR2NPh)RhCp*] (R1 = R2 = Ph (6a), R1 = H, R2 = t-Bu (6b), R1 = H, R2 = p-tol (6c)). Isolation of a relevant unsaturated imido complex [Cp*Rh(mu2-NAr)RhCp*] (7) was achieved by the use of a sterically hindered LiNHAr (Ar = 2,6-diisopropylphenyl) reagent in a metathesis reaction with 1. X-ray structures of 2, 6a, 7 and the terminal isocyanide adduct [Cp*Rh(mu2-NAr)Rh(t-BuNC)Cp*] (8) are reported.  相似文献   

3.
A reaction between [CpFeCl]x and LiNHPh (1 equiv to Fe) produces a new paramagnetic Fe(II)-Fe(III) mu2-amido-mu2-imido complex [(CpFe)2(mu2-NHPh)(mu2-NPh)] (1), which, upon interaction with 2,2'-azobis(2,4-dimethylvaleronitrile), undergoes a net N-H hydrogen atom abstraction reaction to give a diamagnetic Fe(III)-Fe(III) mu2-imido dimer [CpFe(mu2-NPh)]2 (2). The molecular structures of 1 and 2 have been determined by single-crystal X-ray diffraction.  相似文献   

4.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

5.
Treatment of a dinuclear Ru(II) amido complex [Cp*Ru(mu2-NHPh)]2 (Cp* = eta5-C5Me5) with small organic substrates including CO, tert-butyl isocyanide, a sulfur ylide Ph2S=CH2, and diphenylacetylene resulted in an unexpected disproportionation reaction of the bridging amido ligands to produce a free amine and a series of imido-bridged diruthenium complexes [(Cp*Ru)2(mu2-L)(mu2-NPh)] (L = CO, t-BuNC, CH2). In the case of diphenylacetylene, the bridging imido ligand underwent subsequent coupling reaction with the coordinated alkyne to form an iminoalkenyl complex [(Cp*Ru)2(mu2-PhNCPhCPh)].  相似文献   

6.
The mixed-metal cubane-type clusters [(Cp*Mo)3(mu3-S)4RuH2(PR3)][PF(6)] [Cp* = eta5-C5Me5; R = Ph (2), Cy (5)] were effective for the N-N bond cleavage of hydrazine and phenylhydrazine via a disproportionation reaction. The ammonia cluster [(C*Mo)3(mu3-S)4Ru(NH3)(PPh3)][PF6] (3) and/or the unprecedented double-cubane-type cluster with bridging nitrogenous ligands [{(Cp*Mo)3(mu3-S)4Ru}2(mu2-NH2)(mu2-NHNH2)][PF6]2 (4) were isolated from the reaction mixtures, and their structures were determined by X-ray diffraction studies.  相似文献   

7.
By reacting 1-aminoethylammonium (H2NCH2CH2NH3+ = enH+) salts of [Sn2E6]4- anions (E = S, Se), [enH]4[Sn2S6] (1) and [enH]4[Sn2Se6] x en (2), with FeCl2/LiCp, three novel (partly) oxidized, Cp* ligated iron chalcogenide clusters were synthesized. Two of them, [(CpFe)3(mu3-S)2] (3) and [(Cp*Fe)3(mu3-Se)2] (4), contain formally 47 valence electrons. [(Cp*Fe)3(SnCl3)(mu3-Se)4] x DME (5) represents the first known mixed metal Fe/Sn/Se heterocubane type cluster. Compounds 3-5 were structurally characterized by single-crystal X-ray diffraction, and the odd valence electron number of the [Fe3E2] clusters (E = S, Se) was confirmed by density functional (DFT) investigations, mass spectrometry, cyclic voltammetry and a susceptibility measurement of 3.  相似文献   

8.
The reaction of the group 9 bis(hydrosulfido) complexes [Cp*M(SH)2(PMe3)] (M=Rh, Ir; Cp*=eta(5)-C 5Me5) with the group 6 nitrosyl complexes [Cp*M'Cl2(NO)] (M'=Mo, W) in the presence of NEt3 affords a series of bis(sulfido)-bridged early-late heterobimetallic (ELHB) complexes [Cp*M(PMe3)(mu-S)2M'(NO)Cp*] (2a, M=Rh, M'=Mo; 2b, M=Rh, M'=W; 3a, M=Ir, M'=Mo; 3b, M=Ir, M'=W). Similar reactions of the group 10 bis(hydrosulfido) complexes [M(SH)2(dppe)] (M=Pd, Pt; dppe=Ph 2P(CH2) 2PPh2), [Pt(SH)2(dppp)] (dppp=Ph2P(CH2) 3PPh2), and [M(SH)2(dpmb)] (dpmb=o-C6H4(CH2PPh2)2) give the group 10-group 6 ELHB complexes [(dppe)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), [(dppp)Pt(mu-S)2M'(NO)Cp*] (6a, M'=Mo; 6b, M'=W), and [(dpmb)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), respectively. Cyclic voltammetric measurements reveal that these ELHB complexes undergo reversible one-electron oxidation at the group 6 metal center, which is consistent with isolation of the single-electron oxidation products [Cp*M(PMe3)(mu-S)2M'(NO)Cp*][PF6] (M=Rh, Ir; M'=Mo, W). Upon treatment of 2b and 3b with ROTf (R=Me, Et; OTf=OSO 2CF 3), the O atom of the terminal nitrosyl ligand is readily alkylated to form the alkoxyimido complexes such as [Cp*Rh(PMe3)(mu-S)2W(NOMe)Cp*][OTf]. In contrast, methylation of the Rh-, Ir-, and Pt-Mo complexes 2a, 3a, and 6a results in S-methylation, giving the methanethiolato complexes [Cp*M(PMe3)(mu-SMe)(mu-S)Mo(NO)Cp*][BPh 4] (M=Rh, Ir) and [(dppp)Pt(mu-SMe)(mu-S)Mo(NO)Cp*][OTf], respectively. The Pt-W complex 6b undergoes either S- or O-methylation to form a mixture of [(dppp)Pt(mu-SMe)(mu-S)W(NO)Cp*][OTf] and [(dppp)Pt(mu-S) 2W(NOMe)Cp*][OTf]. These observations indicate that O-alkylation and one-electron oxidation of the dinuclear nitrosyl complexes are facilitated by a common effect, i.e., donation of electrons from the group 9 or 10 metal center, where the group 9 metals behave as the more effective electron donor.  相似文献   

9.
Complete donor-induced alkylaluminate cleavage of halfmetallocene complex Cp*Y(AlMe4)2, that is, treatment of Cp*Y(AlMe4)2 with 2 equiv of diethyl ether, produces [Cp*Y(mu2-Me)2]3 in high yield (95%). In contrast, the equimolar reaction of Cp*Y(AlMe4)2 with diethyl ether reproducibly formed complex [Cp*4Y4(mu2-CH3)2{(CH3)Al(mu2-CH3)2}4(mu4-CH)2] in low yield (10-30%) via a multiple C-H bond activation. The synthesis of the heterooctametallic yttrium-aluminum-methine cluster was also accomplished in moderate yield (47%) by the equimolar reaction of discrete Cp*Y(AlMe4)2 and [Cp*Y(mu2-Me)2]3 in the absence of any donor solvent and "free" AlMe3. This gives strong evidence that preformed heterometal-bridged Y-CH3-Al moieties are prone to multiple hydrogen abstraction in the presence of a highly basic reagent such as [Cp*Y(mu2-Me)2]3. The monocylopentadienyl complexes [Cp*Y(mu2-Me)2]3 and [Cp*4Y4(mu2-CH3)2{(CH3)Al(mu2-CH3)2}4(mu4-CH)2] were structurally characterized.  相似文献   

10.
Treatment of mixed chloride tetramethylaluminate polynuclear clusters {Cp*Y[(mu-Me)2AlMe2](mu-Cl)}2 and {Cp*6La6[(mu-Me)3AlMe]4(mu3-Cl)2(mu2-Cl)6} with toluene/THF solutions produces "aluminum-free" methylidene complexes [Cp*3Ln3(mu-Cl)3(mu3-Cl)(mu3-CH2)(THF)3] (Ln = Y, La). The trinuclear methylidene complexes are isostructural in the solid state and feature a sterically well-shielded Schrock-type nucleophilic CH22- unit, which is prone to Tebbe-like methylenation reactions with ketones and aldehydes. The rapid polymerization of gamma-valerolactone reveals intrinsic rare-earth metal reactivity.  相似文献   

11.
Reactions of the bis(hydrosulfido) complexes [Cp*Rh(SH)(2)(PMe(3))] (1a; Cp* = eta(5)-C(5)Me(5)) with [CpTiCl(3)] (Cp = eta(5)-C(5)H(5)) and [TiCl(4)(thf)(2)] in the presence of triethylamine led to the formation of the sulfido-bridged titanium-rhodium complexes [Cp*Rh(PMe(3))(micro(2)-S)(2)TiClCp] (2a) and [Cp*Rh(PMe(3))(micro2-S)(2)TiCl(2)] (3a), respectively. Complex 3a and its iridium analogue 3b were further converted into the bis(acetylacetonato) complexes [Cp*M(PMe(3))(micro(2)-S)(2)Ti(acac)(2)] (4a, M = Rh; 4b, M = Ir) upon treatment with acetylacetone. The hydrosulfido complexes 1a and [Cp*Ir(SH)(2)(PMe(3))] (1b) also reacted with [VCl(3)(thf)(3)] and [Mo(CO)(4)(nbd)] (nbd = 2,5-norbornadiene) to afford the cationic sulfido-bridged VM2 complexes [(Cp*M(PMe(3))(micro2-S)(2))2V](+) (5a(+), M = Rh; 5b(+), M = Ir) and the hydrosulfido-bridged MoM complexes [Cp*M(PMe(3))(micro2-SH)(2)Mo(CO)(4)] (6a, M = Rh; 6b, M = Ir), respectively.  相似文献   

12.
The first carbonyl free ruthenium/low valent Group 13 organyl complexes are presented, obtained by insertion of ER (ER = GaCp*, InCp*, In[C(SiMe(3))(3)]) into the Ru-Cl bonds of [(p-cymene)RuCl2]2, [Cp*RuCl]4 and [Cp*RuCl2]2. The compound [(p-cymene)RuCl2]2 reacts with GaCp*, giving a variety of isolated products depending on the reaction conditions. The Ru-Ru dimers [{(p-cymene)Ru}2(GaCp*)4(mu3-Cl)2] and the intermediate [{(p-cymene)Ru}2(mu-Cl)2] were isolated, as well as monomeric complexes [(p-cymene)Ru(GaCp*)3Cl2], [(p-cymene)Ru(GaCp*)2GaCl3] and [(p-cymene)Ru(GaCp*)2Cl2(DMSO)]. The reaction of [Cp*RuCl]4 with ER gives "piano-stool" complexes of the type [Cp*Ru(ER)3Cl](ER = InCp*, In[C(SiMe3)3], GaCp*. The chloride ligand in complex can be removed by NaBPh4, yielding [Cp*Ru(GaCp*)3]+[BPh4]-. The reaction of [Cp*RuCl2]2 with GaCp* however, does not lead to an insertion product, but to the ionic Ru(II) complex [Cp*Ru(GaCp*)3]+[Cp*GaCl3]-. The ER ligands in complexes 3, 5, 6, 7 and 8 are equivalent on the NMR timescale in solution due to a chloride exchange between the three Group 13 atoms even at low temperatures. The solid state structures, however, exhibit a different structural pattern. The chloride ligands exhibit two coordination modes: either terminal or bridging. The new compounds are fully characterized including single crystal X-ray diffraction. These results point out the different reactivities of the two precursors and the nature of the neutral p-cymene and the anionic Cp* ligand when bonding to a Ru(II) centre.  相似文献   

13.
A new route for organic polyoxometallic clusters describes the first dumb-bell-like organic polyoxozirconium hydroxide [[(Cp*Zr)4(mu5-O)(mu3-O)2(mu-OH)4]2Zr(mu-O)4] x 2C7H8 (2; Cp* = C5Me5) involving the treatment of the Br?nsted acidic organozirconium hydroxide [(Cp*Zr)6(mu4-O)(mu-O)4(mu-OH)8] x 2C7H8 (1) with organozirconium compounds.  相似文献   

14.
The reinvestigation of an early synthesis of heterometallic cubane-type clusters has led to the isolation of a number of new clusters which have been characterized by spectroscopic and crystallographic techniques. The thermolysis of [(Cp*Mo)(2)B(4)H(4)E(2)] (1: E = S; 2: E = Se; Cp* = η(5)-C(5)Me(5)) in presence of [Fe(2)(CO)(9)] yielded cubane-type clusters [(Cp*Mo)(2)(μ(3)-E)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 4 and 5 (4: E = S; 5: E = Se) together with fused clusters [(Cp*Mo)(2)B(4)H(4)E(2)Fe(CO)(2)Fe(CO)(3)] (8: E = S; 9: E = Se). In a similar fashion, reaction of [(Cp*RuCO)(2)B(2)H(6)], 3, with [Fe(2)(CO)(9)] yielded [(Cp*Ru)(2)(μ(3)-CO)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 6, and an incomplete cubane cluster [(μ(3)-BH)(3)(Cp*Ru)(2){Fe(CO)(3)}(2)], 7. Clusters 4-6 can be described as heterometallic cubane clusters containing a Fe(CO)(3) moiety exo-bonded to the cubane, while 7 has an incomplete cubane [Ru(2)Fe(2)B(3)] core. The geometry of both compounds 8 and 9 consist of a bicapped octahedron [Mo(2)Fe(2)B(3)E] and a trigonal bipyramidal [Mo(2)B(2)E] core, fused through a common three vertex [Mo(2)B] triangular face. In addition, thermolysis of 3 with [Mn(2)(CO)(10)] permits the isolation of arachno-[(Cp*RuCO)(2)B(3)H(7)], 10. Cluster 10 constitutes a diruthenaborane analogue of 8-sep pentaborane(11) and has a structural isomeric relationship to 1,2-[{Cp*Ru}(2)(CO)(2)B(3)H(7)].  相似文献   

15.
Treatment of [Cp*IrH(SH)(PMe3)] (Cp* = eta5-C5Me5) with [IrCl2(NO)(PPh3)2] in the presence of triethylamine yielded the sulfido-bridged Ir(II)Ir0 complex [Cp*Ir(PMe3)(mu-S)Ir(NO)(PPh3)], which further reacted with I2 and triflic acid to give the diiodo complex [Cp*Ir(PMe3)(mu-I)(mu-S)IrI(NO)(PPh3)] and the hydrido complex [Cp*Ir(PMe3)(mu-H)(mu-S)Ir(NO)(PPh3)][OSO2CF3], respectively.  相似文献   

16.
The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1'-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively. In toluene at reflux temperatures, 1a with Bu(t)SSBu(t) gives [1-SMe2-2,2-(CO)2-7-(mu-SBu(t))-11-(mu-H)-2,7,11-{Ru2(mu-H)(mu-SBu(t))(CO)4}-closo-2,1-RuCB10H8] 9, and with Bu(t)C [triple bond] CH gives [1-SMe2-2,2-(CO)2-7-{mu:eta2-(E)-CH=C(H)Bu(t)}-11-{mu:eta2-(E)-CH=C(H)Bu(t)}-2,7,11-{Ru2(CO)5}-closo-2,1-RuCB10H8] 10. In the latter, two alkyne groups have inserted into cage B-H groups, with one of the resulting B-vinyl moieties involved in a C-H...Ru agostic bond. Oxidation of 1a with I2 or HgCl2 affords the mononuclear ruthenium complex [1-SMe2-2,2,2-(CO)3-closo-2,1-RuCB10H10] 11.  相似文献   

17.
The tetraruthenium complex [Cp*RuCl]4 (Cp* = eta(5)-C(5)Me(5)) reacts with Na(2)NCN to afford the anionic bis(cyanamido)-capped triruthenium complex [(Cp*Ru)3(micro(3)-NCN)(2)]- ((2-)), which undergoes single electron oxidation to form [(Cp*Ru)3(micro(3)-NCN)2] upon workup with 1 equiv. of [Cp(2)Fe](PF(6)) (Cp = eta(5)-C(5)H(5)). Treatment of (2-) with 1 equiv. of HCl at room temperature leads to the protonation of one of the Ru-Ru edges to give the hydrido-bridged complex [(Cp*Ru)3(micro-H)(micro-NCN)2], while the cationic side-on NCNH(2) complex [(Cp*Ru)3(micro-Cl)(micro(3)-NCN)(micro(3)-NCNH(2)-1kappaC,N:2kappaC:3kappaN)]Cl (5) is obtained by the reaction of (2-) with an excess amount of HCl at -78 degrees C. On the other hand, the reaction of (2-) with BR(3) (R = Et, Ph) results in the ligation of two BR(3) molecules to the terminal nitrogen atoms of the cyanamido ligands to yield the bis(borane) adduct (PPN)[(Cp*Ru)(3){(micro(4)-NCN)(BR(3))}(2)] (6, PPN = Ph(3)PNPPPh(3)). 6b (R = Et) slowly liberates one BEt(3) molecule in acetone to give the mono(borane) adduct (PPN)[(Cp*Ru)3(micro(3)-NCN){(micro(4)-NCN)(BEt(3))}] (7). (2-) is also shown to react with [AuCl(PPh(3))] or PhCOCl to afford the tetranuclear heterometallic complex [(Cp*Ru)3(micro(3)-NCN){(micro(4)-NCN)(AuPPh(3))}] (8) or the benzoylcyanamido complex [(Cp*Ru)3(micro(3)-NCN)(micro(3)-NCNCOPh)] in which the Au(PPh(3))+ or benzoyl fragment is bound to the terminal nitrogen atom of a cyanamido ligand. The molecular structures of PPN+(2-), 5.C(6)H(6), 7 and 8.C(6)H(6) have been determined by single-crystal X-ray analyses.  相似文献   

18.
Nonanuclear cluster complexes [Ru9(mu3-H)2(mu-H)(mu5-O)(mu4-ampy)(mu3-Hampy)(CO)21] (4) (H2ampy = 2-amino-6-methylpyridine), [Ru9(mu5-O)2(mu4-ampy)(mu3-Hampy)2(mu-CO)(CO)20] (5), [Ru9(mu5-O)2(mu4-ampy)(mu3-Hampy)2(mu-CO)2(CO)19] (6), and [Ru9(mu4-O)(mu5-O)(mu4-ampy)(mu3-Hampy)(mu-Hampy)(mu-CO)(CO)19] (7), together with the known hexanuclear [Ru6(mu3-H)2(mu5-ampy)(mu-CO)2(CO)14] (2) and the novel pentanuclear [Ru5(mu4-ampy)(2)(mu-CO)(CO)12] (3) complexes, are products of the thermolysis of [Ru3(mu-H)(mu3-Hampy)(CO)9] (1) in decane at 150 degrees C. Two different and very unusual quadruply bridging coordination modes have been observed for the ampy ligand. Compounds 4-7 also feature one (4) or two (5-7) bridging oxo ligands. With the exception of one of the oxo ligands of 7, which is in a distorted tetrahedral environment, the remaining oxo ligands of 4-7 are surrounded by five metal atoms. In carbonyl metal clusters, quadruply bridging oxo ligands are very unusual, whereas quintuply bridging oxo ligands are unprecedented. By using 18O-labeled water, we have unambiguously established that these oxo ligands arise from water.  相似文献   

19.
The synthesis and structural characterization of the novel homoleptic cluster complexes [Pd2(GaCp*)2(mu2-GaCp*)3] (1c), [Pd3(GaCp*)4(mu2-GaCp*)4] (2b) and [Pd3(AlCp*)2(mu2-AlCp*)2(mu3-AlCp*)2] (3) (Cp*=C5Me5) are presented. Furthermore, ligand exchange reactions of these cluster complexes are explored. In contrast to the electronically and sterically saturated complexes [M(ECp*)4] (M=Ni, Pd, Pt), the new unsaturated analogues [M(a)(ER)b] (E=Al, Ga, In) react with a variety of typical ligands (Cp*Al, CO, phosphines, isonitriles) to give new di- and tri-substituted compounds like [Pt2(GaCp*)2(mu2-AlCp*)3] (1d), [PdPt(GaCp*)(PPh3)(mu2-GaCp*)3] (4b), or [Pd3(PPh3)3(mu2-InCp*)(mu3-InCp*)2] (8). The trends of the reactivity of [M(a)(ER)b] as well as their fluxional behavior in solution has been elucidated by NMR spectroscopy, resulting in a mechanistic rationale for the ligand exchange reactions as well as the fluxional processes.  相似文献   

20.
Thermolyses of [(PMe2Ph)2PdB8H12] and [(PMe2Ph)2PtB8H12] respectively yield eighteen-vertex [(PMe2Ph)2Pd2B16H20(PMe2Ph)2] and [(PMe2Ph)3Pt2B16H18(PMe2Ph)], which exhibit structure models for probable successive precursive intermediates for the more condensed macropolyhedral metallaboranes [(PMe2Ph)4Pt3B14H16], [(PMe2Ph)2Pt2B12H16] and [(PMe2Ph)2Pt2B16H15(C6H4Me)(PMe2Ph)] that have previously been reported as products from [(PMe2Ph)2PdB8H12] thermolyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号