首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid amplification cDNA end (RACE) assay was established to achieve the complete sequence of mitochondrial manganese-superoxide dismutase (Mn-SOD) cDNA in Nelumbo nucifera. The obtained full-length cDNA of Mn-SOD was 926 bp and contained a 699-bp open reading frame encoding an Mn-SOD precursor of 233 amino acids. The recombinant of Mn-SOD expressed by PET-32a vector in Escherichia coli BL21 was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting assays. A 3D structural model of the Mn-SOD was constructed by homology modeling. Real-time polymerase chain reaction analysis revealed that Mn-SOD mRNA was expressed in young leaves, blossom, stems, and terminal buds during reproductive stage but with the highest expression in young leaves. This significant difference demonstrated the differential expression of Mn-SOD in various organs of N. nucifera.  相似文献   

2.
Tandem repeat multimers of Momordica charantia (MC) peptide MC6 were designed and the recombinant plasmid containing 10 copies of MC6 gene was constructed to improve the expression level of MC6 in Escherichia coli. Under the selected conditions of cultivation and induction, the expression level of recombinant TrxA–MC610 protein was above 25% of total bacteria protein. This fusion protein was purified and cleaved with HCl (13%, w/v). Either the un-cleaved or cleaved recombinant proteins was analyzed pharmacological activity by alloxan-induced diabetic mice and only the cleaved products of the recombinant protein showed significant hypoglycemic effects. The study provides a convenient and economical method for the large-scale production of anti-diabetic medicines for pharmaceutical applications.  相似文献   

3.
4.
The levo-lactonase gene of Fusarium proliferatum ECU2002 (EC3.1.1.25) was cloned and expressed in Escherichia coli JM109 (DE3) for biocatalytic resolution of industrially important chiral lactones, including DL-pantoyl lactone which was a key precursor to calcium d-pantothenate. By increasing the biomass concentration and lowering the inducer (isopropyl-β-d-thiogalactoside) concentration and induction temperature, the lactonase production was significantly enhanced up to 20 kU/L, which was 20 times higher than that of wild-type strain F. proliferatum ECU2002. The recombinant Fusarium lactonase was purified using immobilized metal affinity chromatography, and its SDS-PAGE revealed a molecular mass of 50 kDa for the recombinant protein, suggesting that the enzyme was a simplex protein. Furthermore, biocatalytic properties of the recombinant lactonase were investigated, including kinetic parameters, additive’s effect, and substrate specificity. The results reported in this paper provide a feasible method to make the whole cells of E. coli JM109 (DE3) expressing lactonase gene to be a highly efficient and easy-to-make biocatalyst for asymmetric synthesis of chiral compounds.  相似文献   

5.
Cordyceps militaris produces cordycepin (3′-deoxyadenosine), which has various activities, including anti-oxidant, anti-tumoral, anti-viral, and anti-inflammatory. Ribonucleotide reductase (RNR) seems to be a candidate to produce cordycepin in C. militaris because RNR catalyzes the reduction of nucleotides to 2′-deoxynucleotides, whose structures are similar to that of cordycepin. However, the role of RNR has not been confirmed yet. In this study, complementary DNAs (cDNAs) of C. militaris RNR (CmRNR) large and small subunits (CmR1 and CmR2) were cloned from C. militaris NBRC9787 to investigate the function of CmRNR for its cordycepin production. C. militaris NBRC9787 began to produce cordycepin when grown in a liquid surface culture in medium composed of glucose and yeast extract for 15 days. CmR1 cDNA and CmR2 cDNA were obtained from its genomic DNA and from total RNA extracted from its mycelia after cultivation for 21 days, respectively. Recombinant CmR1 and CmR2 were expressed individually in Escherichia coli and purified. Purified recombinant CmR1 and CmR2 showed RNR activity toward adenosine diphosphate (ADP) only when two subunits were mixed but only show the reduction of ADP to 2′-deoxyADP. These results indicate that the pathway from ADP to 3′deoxyADP via CmRNR does not exist in C. militaris and cordycepin production in C. militaris may be mediated by other enzymes.  相似文献   

6.
A phosphite dehydrogenase gene (ptdhK) consisting of 1,011-bp nucleotides which encoding a peptide of 336 amino acid residues was cloned from Pseudomonas sp. K. gene ptdhK was expressed in Escherichia coli BL21 (DE3) and the corresponding recombinant enzyme was purified by metal affinity chromatography. The recombinant protein is a homodimer with a monomeric molecular mass of 37.2 kDa. The specific activity of PTDH-K was 3.49 U mg−1 at 25 °C. The recombinant PTDH-K exhibited maximum activity at pH 3.0 and at 40 °C and displayed high stability within a wide range of pHs (5.0 to 10.5). PTDH-K had a high affinity to its natural substrates, with K m values for sodium phosphite and NAD of 0.475 ± 0.073 and 0.022 ± 0.007 mM, respectively. The activity of PTDH-K was enhanced by Na+, NH4+, Mg2+, Fe2+, Fe3+, Co2+, and EDTA, and PTDH-K exhibited different tolerance to various organic solvents.  相似文献   

7.
The protective antigen (PA) of Bacillus anthracis is a potent immunogen and an important candidate vaccine. In addition, it is used in monitoring systems like enzyme-linked immunosorbent assay to assess antibodies against PA in immunized subjects. The low level of PA production in B. anthracis and the difficulty of separating it from other bacterial components have made the researchers do different studies with the aim of producing recombinant PA (rPA). In this study, to produce rPA as a recombinant protein vaccine, the partial sequence of protective antigen of B. anthracis, amino acids 175–764, as a potent immunogenic target was inserted in pET21b(+). This is a prokaryotic plasmid that carries an N-terminal T7.tag sequence. The integrity of constructed plasmid was confirmed using restriction enzyme mapping. rPA was expressed after induction with isopropyl β-d-1-thiogalactopyranoside in Escherichia coli BL21. Purification of rPA was done with an affinity system using anti T7.tag antibody. Electrophoresis and Western blotting confirmed the specificity of the expressed protein. BALB/c mice were immunized with obtained PA protein and evaluation of specific immunoglobulin G antibodies against PA in sera using Western blotting method and showed that rPA is immunogenic. The challenge of immunized mice with virulent strain of B. anthracis showed that rPA is functional to protect against pathogenic strain.  相似文献   

8.
The triosephosphate isomerase of Leishmania donovani (LdTIM) was expressed at high level in Escherichia coli. The TIM gene was cloned in expression vector pET-23(a) with C-terminal 6× His tag fused in frame, and expressed as a 27.6-kDa protein in E. coli as inclusion bodies. The recombinant LdTIM from E. coli lysate was solubilized in 6 M guanidine hydrochloride and purified by Ni-NTA chromatography. In the present study, the effect of bovine serum albumin on the reactivation of TIM was investigated. Furthermore, 8-anilino-1-naphthalene sulfonic acid was used to detect the structural changes induced by bovine serum albumin (BSA). Here, we conclude that BSA assists in the refolding and regain of LdTIM enzyme activity by providing framework for structure formation. This study indicates that numerous protein–protein contacts are constantly occurring inside the cell that leads to the formation of native protein.  相似文献   

9.
Metschnikowia reukaufii W6b isolated from marine environment was found to produce a cell-bound acid protease. The full-length cDNA (cDNASAP6 gene) of the acid protease (SAP6) from the marine-derived yeast M. reukaufii W6b was cloned. The insert was 1,755-bp long and contained an open reading frame of 1,527-bp encoding 508 amino acids. The deduced amino acid sequence included a signal peptide of 16 amino acids. The consensus motifs contained a VLLDTGSSDLRM active site and an ALLDSGTTITQF active site. The protein sequence deduced from the cDNASAP6 gene exhibited 12.9% overall identity with Cwp1 of Saccharomyces cerevisiae and a hydropathy profile characteristic of glycosylphosphatidylinositol cell-wall proteins. The cDNASAP6 gene without 48 bp encoding the signal peptide sequence was subcloned into an expression plasmid pET-24a (+) and fused with a 6-His Tag and transformed into Escherichia coli BL21 (DE3) for recombinant expression of the protease. The expressed fusion protein was found to have a unique band with molecular mass of about 54 kDa. The crude acid protease of the culture of the marine yeast strain W6b and the crude recombinant acid protease had milk clotting activity.  相似文献   

10.
Seven Escherichia coli strains, which were metabolically engineered with carotenoid biosynthetic pathways, were systematically compared in order to investigate the strain-specific formation of carotenoids of structural diversity. C30 acyclic carotenoids, diaponeurosporene and diapolycopene were well produced in all E. coli strains tested. However, the C30 monocyclic diapotorulene formation was strongly strain dependent. Reduced diapotorulene formation was observed in the E. coli strain Top10, MG1655, and MDS42 while better formation was observed in the E. coli strain JM109, SURE, DH5a, and XL1-Blue. Interestingly, C40 carotenoids, which have longer backbones than C30 carotenoids, also showed strain dependency as C30 diapotorulene did. Quantitative analysis showed that the SURE strain was the best producer for C40 acyclic lycopene, C40 dicyclic β-carotene, and C30 monocyclic diapotorulene. Of the seven strains examined, the highest volumetric productivity for most of the carotenoids structures was observed in the recombinant SURE strain. In conclusion, we showed that recombinant hosts and carotenoid structures influenced carotenoid productions significantly, and this information can serve as the basis for the subsequent development of microorganisms for carotenoids of interest.  相似文献   

11.
The 5-aminolevulinate (ALA) synthase gene (hemA) from Agrobacterium radiobacter zju-0121, which was cloned previously in our laboratory, contains several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was picked out as the host to construct an efficient recombinant strain. Cell extracts of the recombinant E. coli were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under the appropriate conditions. The results indicated that the activity of ALA synthase expressed in Rosetta(DE3)/pET-28a(+)-hemA was about 20% higher than that in E. coli BL21(DE3). Then the effects of precursors (glycine and succinate) and glucose, which is an inhibitor for ALA dehydratase as well as the carbon sources for cell growth, on the production of 5-aminolevulinate were investigated. Based on an optimal fed-batch culture system described in our previous work, up to 6.5 g/l (50 mM) ALA was produced in a 15-l fermenter.  相似文献   

12.
The isolation, purification, and properties of a putative small heat shock protein (sHsp), named SsHSP14.1, from the hyperthermophilic archaeon Sulfolobus solfataricus have been investigated. The sHsp was successfully expressed and purified from Escherichia coli. In vivo chaperone function of SsHSP14.1 for preventing aggregation of proteins during heating was investigated. It was found that recombinant SsHSP14.1 with a molecular mass of 17.8 kDa prevented E. coli proteins from aggregating in vivo at 50 °C. This result suggested that SsHSP14.1 confers a survival advantage on mesophilic bacteria by preventing protein aggregation at supraoptimal temperatures. In vitro, the purified SsHSP14.1 protein was able to prevent Candida antarctica lipase B from aggregation for up to 60 min at 80 °C. Moreover, the SsHSP14.1 enhanced thermostability of bromelain extending its half-life at 55 °C by 67%.  相似文献   

13.
Ahpfibrase was a new snake venom metalloproteinase (SVMP) which was cloned from Gloydius halys. The cDNA sequence with 1,891 base pairs encodes an open reading frame of 477 amino acids which includes a 17 amino acid signal peptide, plus a 171 amino acid segment of zymogen-like propeptide, a metalloproteinase domain of 200 amino acids, a spacer of 16 amino acids, and a disintegrin-like peptide of 73 amino acids. The metalloproteinase domain contained a conserved signature zinc-binding motif HEXXHXXGXXH in the catalytic region and a methionine-turn CIM. To determine the activity of ahpfibrase, the coding region including both the metalloproteinase domain and disintegrin region was amplified by PCR, inserted into the pET25b(+) vector, and expressed in Escherichia coli. The recombinant protein was recovered from inclusion bodies with 8 M urea and refolding was performed by fed-batch dilution method, and purified recombinant ahpfibrase showed the fibrinolytic activity and platelet aggregation–inhibition ability.  相似文献   

14.
Corynebacterium crenatum SYPA 5-5 is an aerobic and industrial l-arginine producer. It was proved that the Corynebacterium glutamicum/Escherichia coli shuttle vector pJC1 could be extended in C. crenatum efficiently when using the chloramphenicol acetyltransferase gene (cat) as a reporter under the control of promoter tac. The expression system was applied to over-express the gene vgb coding Vitreoscilla hemoglobin (VHb) to further increase the dissolved oxygen in C. crenatum. As a result, the recombinant C. crenatum containing the pJC-tac-vgb plasmid expressed VHb at a level of 3.4 nmol g−1, and the oxygen uptake rates reached 0.25 mg A562−1 h−1 which enhanced 38.8% compared to the wild-type strain. Thus, the final l-arginine concentration of the batch fermentation reached a high level of 35.9 g L−1, and the biomass was largely increased to 6.45 g L−1, which were 17.3% and 10.5% higher than those obtained by the wild-type strain, respectively. To our knowledge, this is the first report that the efficient expression system was constructed to introduce vgb gene increasing the oxygen and energy supply for l-arginine production in C. crenatum, which supplies a good strategy for the improvement of amino acid products.  相似文献   

15.
The sucrose isomerase (SIase) gene from an efficient strain of Erwinia rhapontici NX-5 for isomaltulose hyperproduction was cloned and overexpressed in Escherichia coli. Protein sequence alignment revealed that SIase was a member of the glycoside hydrolase 13 family. The molecular mass of the purified recombinant protein was estimated at 66 kDa by SDS-PAGE. The SIase had an optimal pH and temperature of 5.0 and 30 °C, respectively, with a K m of 257 mmol/l and V max of 48.09 μmol/l/s for sucrose. To the best of our knowledge, the recombinant SIase has the most acidic optimum pH for isomaltulose synthesis. When the recombinant E. coli (pET22b- palI) cells were used for isomaltulose synthesis, almost complete conversion of sucrose (550 g/l solution) to isomaltulose was achieved in 1.5 h with high isomaltulose yields (87%). The immobilized E. coli cells remained stable for more than 30 days in a “batch”-type enzyme reactor. This indicated that the recombinant SIase could continuously and efficiently produce isomaltulose.  相似文献   

16.
A recombinant Bombyx mori profilin protein (rBmPFN) was overexpressed in Escherichia coli BL21. Purified rBmPFN was used to generate anti-BmPFN polyclonal antibody, which were used to determine the subcellular localization of BmPFN. Immunostaining indicated that profilin can be found in both the nucleus and cytoplasm but is primarily located in the cytoplasm. Real-time RT-PCR and Western blot analyses indicated that, during the larvae stage, profilin expression levels are highest in the silk gland, followed by the gonad, and are lowest in the fatty body. Additionally, BmPFN expression begins during the egg stage, increases during the larvae stage, reaches a peak during the pupa stage, and decreases significantly in the moth. Therefore, we propose that BmPFN may play an important role during larva stage development, especially in the silk gland.  相似文献   

17.
A gene of glucose oxidase (GOD) from Aspergillus niger Z-25 was cloned and sequenced. The entire open reading frame (ORF) consisted of 1,818 bp and encoded a putative peptide of 605 amino acids. The gene was fused to the pPICZαA plasmid and overexpressed in Pichia pastoris SMD1168. The recombinant GOD (rGOD) was secreted into the culture using MF-α factor signal peptide under the control of the AOX1 promoter. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that rGOD exhibited a single band at around 94 kDa. The maximal GOD activity of approximately 40 U/mL was achieved in shake flask by induction under optimal conditions after 7 days. rGOD was purified by ammonium sulfate precipitate leading to a final specific activity of 153.46 U/mg. The optimum temperature and pH of the purified enzyme were 40 °C and 6.0, respectively. Over 88% of maximum activity was maintained below 40 °C. And the recombinant enzyme displayed a favorable stability in the pH range from 4.0 to 8.0. The Lineweaver–Burk plotting revealed that rGOD exhibited a K m value of 16.95 mM and a K cat value of 484.26 s−1.  相似文献   

18.
To obtain a high level expression of phytase with favorable characteristics, a codon-optimized phytase gene from Citrobacter freundii was synthesized and transferred into Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. After purified by Ni2+–NTA agarose affinity column, the characterizations of the recombinant phytase were determined. The recombinant phytase (r-phyC) had two distinct pH optima at 2.5 and 4.5 and an optimal temperature at 50 °C. It retained more than 80% activity after being incubated under various buffer (pH 1.5–8.0) at 37 °C for 1 h. The specific activity, Km, and Vmax values of r-phyC for sodium phytate were 2,072 ± 18 U mg−1, 0.52 ± 0.04 mM, and 2,380 ± 84 U mg−1 min−1, respectively. The enzyme activity was significantly improved by 1 mM of K+, Ca2+, and Mg2+. These characteristics contribute to its potential application in feed industry.  相似文献   

19.
Recent reports describe the inhibition of human dihydrofolate reductase (hDHFR) by natural tea polyphenols. This finding could explain the epidemiologic data on their prophylactic effects for certain forms of cancer, and it raises the possibility that natural and synthetic polyphenols could be used in cancer chemotherapy. In order to obtain larger quantities of hDHFR to support structural studies, we established and validated a baculovirus system for the expression of this protein in Bombyx mori chrysalides (pupae of the silkworm enclosed in a cocoon). To isolate the expressed protein, whole infected pupae were homogenized, and the expressed protein was purified by affinity chromatography. Here, we demonstrate the efficient expression of recombinant hDHFR in this model and report that this newly expressed protein has high enzymatic activity and kinetic properties similar to those previously reported for recombinant hDHFR expressed in Escherichia coli. The purified protein showed dissociation constants for the binding of natural polyphenols similar to that expressed in E. coli, which ensures its usage as a new tool for further structural studies. Although the hDHFR yield per individual was found to be lower in the chrysalides than in the larvae of B. mori, the former system was optimized as a model for the scaled-up production of recombinant proteins. Expression of proteins in chrysalides (instead of larvae) could offer important advantages from both economic and biosecurity aspects.  相似文献   

20.
A gene encoding chitin deacetylase was cloned by polymerase chain reaction from Aspergillus nidulans. Sequencing result showed 40% homology to the corresponding gene from Colletotrichum lindemuthianum. The complete gene contains an open reading frame of 747 nucleotides encoding a sequence of 249 amino acid residues. The chitin deacetylase gene was subcloned into a pET28a expression vector and expressed in Escherichia coli BL21 and then purified by metal affinity chromatography using a His-bind column. The purified chitin deacetylase demonstrated an activity of 0.77 U ml−1 for the glycol chitin substrates, and its specific activity was 4.17 U mg−1 for it. The optimal temperature and pH of the purified enzyme were 50 °C and 8.0, respectively. When glycol chitin was used as the substrate, K m was 4.92 mg ml−1, and K cat showed 6.25 s−1, thus the ratio of K cat and K m was 1.27 ml s−1 mg−1. The activity of chitin deacetylase was affected by a range of metal ions and ethylenediaminetetraacetic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号