首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extraction of Pu(IV) and Th with tridodecylamine—xylene mixtures from about 6M nitric acid soil leach solutions was studied as a function of the chemical composition of the aqueous phase (iron and calcium concentration, acidity) and the amine concentration in the extractant. No correlation was found between the partition coefficients of Pu(IV) and Th and the composition parameters mentioned above at any of the amine concentrations examined. The slope, in a bilogarithmic plot, of the partition coefficients versus the amine concentrations was found to be close to 2 for Pu(IV) as well as Th in pure 6.5M nitric acid solution, thus indicating the presence of the complexes Pu(NO3) 6 2− and Th(NO3) 6 2− in the extract. When the pure nitric acid solution was replaced by soil leach solutions of similar molarity in HNO3, the slope remained 2 for Pu(IV), but changed to 1.5 for Th. A possible reason for this slope yielded by Th may be the coexistence of the complexes Th(NO3) 6 2− and Th(NO3) 5 in the extraction phase. Presented at the 4th SAC Conference on Analytical Chemistry, Birmingham 1977.  相似文献   

2.
The extraction of Am(III), Pu(IV) and U(VI) as representatives of tri-, tetra- and hexavalent actinides by dibutyl-N,N-diethylcarbamoylmethylenephosphonate (DBDECMP) from nitric acid solution has ben studied with an objective of understanding the extraction mechanism. The dependence of the distribution ratios of the actinide ions was studied as a function of the concentration of H+, DBDECMP and NO 3 . The extraction data revealed that all the three actinide ions are extracted as their neutral nitrate complexes solvated by DBDECMP which behaves as neutral extractant only. The absorption spectra of DBDECMP and TBP extracts of these actinide ions were recorded. From the close similarity of these spectra it is inferred that DBDECMP acts as a monodentate extractant in the present system.  相似文献   

3.
The extractive properties of tri-isoamyl-phosphate (TAP), an indigenously prepared extractant, and the loading capacity of extraction solvent containing TAP for U(VI) and Pu(IV) ions in nitric solution have been investigated. The dependence of the distribution ratio on the concentration of nitric acid showed that TAP has an ability to extract these actinides, while the fission product contaminants are poorly extracted. The distribution data revealed a quantitative extraction of both U(VI) and Pu(IV) from moderate nitric acidities in the range 2–7 mol · dm–3. Slope analysis proved predominant formation of the disolvated organic phase complex of the type UO2(NO3). 2TAP and Pu(NO3)4·2TAP with U(VI) and PU(IV), respectively. On the contrary, the extraction of fission product contaminants such as144Ce,137Cs,9Nb.,147Pr,106Ru,95Zr was almost negligible even at very high nitric acid concentrations in the aqueous phase indicating its potential application in actinide partitioning. The recovery of TAP from the loaded actinides could be easily accomplished by using a dilute sodium carbonate solution or acidified distiled water (0.01 mol · dm–3 HNO3) as the strippant for U(VI) and using uranous nitrate or ferrous sulphamate as that for Pu(IV). Radiation stability of TAP was adequate for most of the process applications.  相似文献   

4.
The complex formation of U(VI), Np(VI) and Pu(VI) with chloride ions was studied in HClO4−HCl solutions at ionic strength of 2.0 and [H+]=2.0M by the method of extraction chromatography using dilute HDEHP as the stationary phase.  相似文献   

5.
The behavior of molybdenum(III), tungsten(IV), and uranium(VI) ions in NaCl-2CsCl-eutectic-mixture-based melt at 550°C is studied by spectroelectrochemical method. Anodic oxidation of MoCl63− and WCl62− yields melt-soluble chloride compounds MoCl62− and WCl6 respectively. It is shown that the electrochemical recharging in the Mo(III)/Mo(IV) system is reversible; the formal standard potential E*Mo(IV)/Mo(III)and the Gibbs energy $ \Delta G_{MoCl_4 (melt)}^* $ \Delta G_{MoCl_4 (melt)}^* are evaluated. The cathodic reduction of U(VI) yields U(V) ions. The cathodic reduction of W(IV) ion does not yield melt-soluble tungsten compounds of lower oxidation state.  相似文献   

6.
Extraction behavior of U(VI) and Th(IV) from nitric acid medium is investigated using organo-phosphorous extractant, tri(butoxyethyl) phosphate in n-paraffin at room temperature (27 ± 1 °C). The effect of diluents, nitric acid concentration as well as extractant concentration on extraction of U(VI) and Th(IV) are evaluated. Extraction of U(VI) and Th(IV) from nitric acid medium proceeds via solvation mechanism. Slope analysis technique showed the formation of neutral complexes of the type of UO2(NO3)2·2TBEP and Th(NO3)4·3TBEP with U(VI) and Th(IV) respectively in the organic phase. The FTIR data showed shifting of P=O stretching frequency from 1,282 to 1,217 cm−1 indicating the strong complexation of P=O group with UO2 2+ ions in the organic phase. Effect of stripping agents, other metal ions and their separation with respect to U(VI) extraction has also been investigated.  相似文献   

7.
Olive cake as low-cost abundantly available sorbent has been characterized by N2 at 77 K adsorption, porosity analysis, elemental analysis and IR spectra and has been used for preconcentrating of uranium(VI) and thorium(IV) ions prior to their determination spectrophotometrically. The optimum pH values for quantitative sorption of U(VI) and Th(IV) are 4–7 and 3–7, respectively. The enrichment factor for the preconcentration of U(VI) and Th(IV) were found to be 125 and 75 in the given order. The sorption capacity of olive cake is in the range of 2,260–15,000 μg g−1 for Th(IV) and in the range of 1,090–17,000 μg g−1 for U(VI) at pH 3–7. The sorbent exhibits good reusability and the uptake and stripping of the studied ions were fairly rapid. The elution of U(VI) and Th(IV) was performed with 0.3–1 M HCl/1–2 M HNO3 and 0.3–0.8 M HCl/1 M HNO3, respectively. The precision of the method was 1.8 RSD% for U(VI) and 2.5 RSD% for Th(IV) in a concentration of 1.00 μg mL−1 for 10 replicate analysis. The influence of some electrolytes and cations as interferents was discussed. Separation of U(VI) and Th(IV) from other metal ions in synthetic solution was achieved.  相似文献   

8.
Complex formation between actinide(VI) and fluoride ions in aqueous solutions has been investigated using a fluoride ion selective electrode (F-ISE). As fairly high acidity was used to suppress hydrolysis of the actinide(VI) ions, significant liquid junction potentials (Ej) existed in the systems. An iterative procedure was developed for computing free hydrogen ion concentration [H+], as it could not be measured directly, using data obtained with F-ISE. Ej values were estimated from known [H+] and the stability constants of fluoride complexes of actinide(VI) ions were calculated following KING and GALLAGHER's method using a computer program. The stability constants were found to follow the order U(VI)>Np(VI)>Pu(VI).  相似文献   

9.
The uptake behavior of U(VI), Pu(IV), Am(III) and a few long-lived fission products from nitric acid media by bis(2-ethylhexyl) sulfoxide (BESO) adsorbed on Chromosorb has been studied U(VI), Pu(IV) and Zr(IV) are taken up appreciably as compared to trivalent actinides/lanthanides including some coexisting fission product contaminants which are weakly sorbed on the column. Chromosorb could be loaded with (1.12±0.03) g of BESO per g of the support. Maximum sorption is observed around 4–5 mol·dm–3 HNO3 for both U(VI) and Pu(IV), which are sorbed as their disolvates. The elution of (U(VI) and Pu(IV) from the metal loaded sorbent has also been optimized. Desorption of U(VI) is easily accomplished with dilute nitric acid (ca. 0.01 mol·dm–3)while Pu(IV) is reductively stripped with 0.1 mol·dm–3 NH2OH·HCl. Effective sequential separation of U(VI), Pu(IV) and Am(III) from their several admixtures could be readily achieved from real medium and low level active acidic process raffinates.  相似文献   

10.
The development of a spectrophotometric method for the determination of hydrogen peroxide in uranyl nitrate solutions is reported. The method involves the measurement of the absorbance at 520 nm of a vanadyl peroxide species. This species was formed by the addition of a reagent consisting of vanadium (V) (50 mmol·dm−3) in dilute sulphuric acid (2 mol·dm−3 H2SO4). This reagent, after dilution, was also used as an extractant for organic phase samples. The method is simple and robust and tolerant of nitric acid and U(VI). Specificity and accuracy were improved by the application of solid phase extraction techniques to remove entrained organic solvents and Pu(IV). Reverse phase solid phase extraction was used to clean-up aqueous samples or extracts which were contaminated with entrained solvent. A solid phase extraction system based upon an extraction chromatography system was used to remove Pu(IV). Detection limits of 26 μmol·dm−3 (0.88 μg·cm−3) or 7 μmol·dm−3 (0.24 μg·cm−3) for, respectively, a 1 and 4 cm path length cell were obtained. Precisions of RSD=1.4% and 19.5% were obtained at the extremes of the calibration curve (5 mmol·dm−3 and 50 μmol·dm−3 H2O2, 1 cm cell). The introduction of the extraction and clean-up stages had a negligible effect upon the precision of the determination. The stability of an organic phase sample was tested and no loss of analyte could be discerned over a period of at least 5 days. The presence of trace levels of reductants interfered with the determination, e.g., hydrazine (<2 mmol·dm−3), but this effect was ameliorated by increasing the concentration of the colormetric reagent.  相似文献   

11.
Synergistic extraction studies on Np(VI) and Pu(VI) have been carried out as a part of the programme on the synergistic extraction of hexavalent actinides. Extraction of Np(VI) and Pu(VI) were carried out by mixtures of HTTA and TBP in benzene from aqueous perchlorate and nitrate media. Equilibrium constant values for the various reaction equilibria involved were calculated from the data obtained by using slope-ratio as well as Job’s method. The extraction of Np(VI) by the synergistic mixture from 1M nitric acid indicated that the species NpO2 (TTA) (NO3). TBP was not involved in the extraction. The log values of KA, KAB and βAB were −1.5, 2.92 and 4.43, respectively for Np(VI) and −1.63, 2.50 and 4.13 respectively for Pu(VI).  相似文献   

12.
The simultaneous determination of U(VI), Pu(VI), Pu(V) in 0.5–4.0 M NaOH has been elaborated by means of classical and differential pulse voltamperometry. U(VI) is determined with a dropping mercury electrode (DME) at the half-wave potential of E1/2=–0.89 V vs. Ag/AgCl reference electrode due to reduction to U(V). The limiting current or peak heights are proportional to uranium(VI) concentration in the range of 1.3.10–7–3·10–4 M U(VI). Deviation from proportionality is observed for higher concentrations due to polymerization of uranates. Pu(VI) and Pu(V) are determined with a platinum rotating electrode at E1/2=–0.02 V due to the reaction Pu(VI)+e»Pu(V) and with DME at E1/2=–1.1 V due to the reduction to Pu(III). The limiting currents of both Pu(VI) and Pu(V) are proportional to their concentrations in the range of 4·10–6–1.2·10–3 M Pu. The determination of U(VI), Pu(VI), Pu(V) is not interfered by the presence of the following salts: 2M NaNO3, 2M NaNO2, 1.5M NaAlO2, 0.5M NaF and ions of Mo(VI), W(VI), V(V), Cu(II). The presence of CrO 4 2– and FeO 2 ions disturbs the determination of U(VI) in 1–4M NaOH, however, contribution of the reaction Fe(III)+e»Fe(II) to uranium reduction peak can be calculated from the height of the second peak Fe(II)+2 e»Fe(0).  相似文献   

13.
The extraction behaviour of trace and macroamounts of chromium(VI) from different mineral acid solutions by 2-hexylpyridine in chloroform has been investigated. In the chloride system, the extracted species is apparently (HPyH+)2 (Cr2O7)2− or HPy+(HCrO 4 ) for macro and trace amounts of chromium(VI), respectively. Among the common anions chloride and sulphate have little effect on extraction up to 1M concentration, while in the case of nitrate there is a continuous decrease in the extraction with the increase of salt concentration in the aqueous phase. The effect of ascorbate, acetate, citrate, oxalate, thiosulphate, thiocyanate ions on the extraction from 1M HCl was also examined. Separation factors of several elements relative to chromium(VI) have been described and the separation of chromium(IV) from a large number of elements has been achieved.  相似文献   

14.
The sorption of Pu(IV), polymeric Pu(IV), Pu(V) and Pu(VI) from the 0.1 M NaClO4 solution onto multiwalled carbon nanotubes was investigated. The kinetic study of the sorption process have shown that the polymeric Pu(IV) has the highest sorption rate, while decrease of sorption rate for plutonium aqua-ions in the order Pu(VI) > Pu(IV) > Pu(V) was found. Strong dependence of sorption kinetics of ionic plutonium species on pH was shown, in contrast to polymeric species, that were shown to quantitatively sorb (99%) in the wide pH range (pH 2–10). Two different sorption mechanisms for ionic and polymeric plutonium species were proposed: on the bases of sorption isotherms chemisorptions of plutonium aqua-ions onto carbon nanotubes and through intermolecular interaction for the polymeric plutonium species was defined. Distribution coefficients of plutonium in various oxidation states were found to increase with pH, showing the highest values for polymeric plutonium sorption (K d  = 2.4 × 105 mL g−1 at pH = 6).  相似文献   

15.
The complexation of plutonium(IV) with sulfate at variable temperatures has been investigated by solvent extraction method. A NaBrO3 solution was used as holding oxidant to maintain the plutonium(IV) oxidation state throughout the experiments. The distribution ratio of Pu(IV) between the organic and aqueous phases was found to decrease as the concentrations of sulfate were increased. Stability constants of the 1:1 and 1:2 Pu(IV)-HSO4 complexes, dominant in the aqueous phase, were calculated from the effect of [HSO4 ] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures using the Van’t Hoff equation.  相似文献   

16.
17.
This paper reports silica gel loaded with p-tert-butylcalix[8]arene as a new solid phase extractor for determination of trace level of uranium. Effective extraction conditions were optimized in column methods prior to determination by spectrophotometry using arsenazo(III). The results showed that U(VI) ions can be sorbed at pH 6 in a mini-column and quantitative recovery of U(VI) (>95–98%) was achieved by stripping 0.4 mol L−1 HCl. The sorption capacity of the functionalized sorbent is 0.072 mmol uranium(VI) g−1 modified silica gel. The relative standard deviation and detection limit were 1.2% (n = 10) for 1 μg uranium(VI) mL−1 solution and 0.038 μg L−1, respectively. The method was employed to the preconcentration of U(VI) ions from spiked ground water samples.  相似文献   

18.
The solvent extraction of Tc(IV) and Tc(VII) by isoamyl alcohol has been studied. The TcCl 6 2− and TcO 4 ions are both extracted from 3M H2SO4 solution but hydrolyzed Tc(IV) species are not. This permits the separation of the two valence states of technetium. The air oxidation of carrier-free hydrolyzed99mTc(IV) may be limited by the presence of99Tc carrier in the same chemical form. Paper chromatography and electrophoresis were used to identify TcCl 6 2− , TcO 4 and hydrolyzed species. It was also found that the hydrolyzed ReCl 6 2− can reduce TcO 4 to Tc(IV).  相似文献   

19.
The extraction of uranyl nitrate by the novel extractant N,N’-dimethyl-N,N’-dioctylsuccinylamide (DMDOSA) from aqueous nitric/nitrate solutions was investigated. The effects of concentration of HNO3 and DMDOSA on the U(VI) extraction distribution was studied. The extraction mechanism was established and the stoichiometry of the main extracted species was confirmed to be UO2(NO3)2·2DMDOSA. The value of ΔH of the extraction is −23.9±1.7 kJ·mol−1. A IR spectral study of the U(VI) extracted species was also made.  相似文献   

20.
The extraction behavior of U(VI) and Pu(IV) with dioctyloctanamide (DOOA), dioctylethylhexanamide (DOEHA) and diisobutylethylhexanamide (DIBEHA) was investigated from nitric acid medium. With DOOA, U(VI) extraction is higher than that for Pu(IV) upto 5M HNO3 and the trend is reversed at higher acid concentrations. Extraction yield of U(VI) is higher than that for Pu(IV) in the case of DOEHA and DIBEHA. DIBEHA extraction of Pu(IV) is found to be very small. The lower value of the distribution ratio for Pu(IV) with branched amides was attributed to steric reasons. The possibility of using these amides for separation of U(VI) and Pu(IV) without valency adjustment was explored. Both U(VI) and Pu(IV) are extracted as their disolvates by DOOA and DOEHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号