首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
多重反应监测(multiple reaction monitoring,MRM)是针对靶标分子的一种质谱分析技术.该技术采用三重四级杆质谱仪,检测靶标分子的母离子和子离子的质谱响应信号,从而获取较灵敏和高重现性的定性和定量信息,近年来在蛋白质组学领域得到了广泛应用.与全谱性的蛋白质组学分析不同,MRM注重有限目标的蛋白质定量测定,因此,它在蛋白质分析检测领域中的应用极有发展潜力.在临床检验中,酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)是蛋白质定量分析的常规技术,但是ELISA在多重蛋白质生物标志物的测定方面具有一定限制.随着蛋白质组学的深入进行,MRM的定量分析优势可否应用于临床检测已提至日程,世界范围内多个研究团队一直致力于推动这一领域的发展,也取得了令人瞩目的成就.本文简单介绍了MRM技术的原理、优势及发展前景等,同时,对其在蛋白质组学研究及临床应用中的潜力进行了讨论.  相似文献   

2.
蛋白质组学是在整体水平上研究细胞、组织或生物体蛋白质组成及变化规律的科学.与传统的生物学研究相比,蛋白质组学具有快速、灵敏、高通量的优点.神经退行性疾病是一类由神经系统内特定神经细胞的进程性病变或丢失而导致神经功能障碍的疾病,严重危害人类健康.近年来,基于质谱的蛋白质组学技术在神经退行性疾病的研究中得到了广泛应用.本文简要介绍了蛋白质组学在样品分离、多肽定量、质谱检测及生物标志物临床验证等方面的技术发展,并结合实例综述了基于质谱的蛋白质组学在神经退行性疾病生物标志物发现与验证中的研究进展.  相似文献   

3.
梁玉  张丽华  张玉奎 《色谱》2020,38(10):1117-1124
蛋白质组学研究在生物学、精准医学等方面发挥着重要的作用。然而研究面临的巨大挑战来自生物样品的复杂性,因此在质谱(MS)鉴定技术不断革新的同时,发展分离技术以降低样品复杂度尤为重要。毛细管电泳(CE)技术具有上样体积小、分离效率高、分离速度快等优势,其与质谱的联用在蛋白质组学研究中越来越受到关注。低流速鞘流液和无鞘流液接口的发展及商品化推动了CE-MS技术的发展。目前毛细管区带电泳(CZE)、毛细管等电聚焦(CIEF)、毛细管电色谱(CEC)等分离模式已与质谱联用,其中CZE-MS应用最广泛。目前被广泛采用的蛋白质组学研究策略主要是基于酶解肽段分离鉴定的"自下而上(bottom-up)"策略。首先,CE-MS技术对酶解肽段的检测灵敏度高达1 zmol,已成功应用于单细胞蛋白质组学;其次,毛细管电泳技术与反相液相色谱互补,为疏水性质相近的肽段(尤其是翻译后修饰肽段)的分离鉴定提供了新的途径。基于整体蛋白质分离鉴定的自上而下"top-down"策略可以直接获得更精准、更完整的蛋白质信息。CE技术在蛋白质大分子的分离方面具有分离效率高、回收率高的优势,其与质谱的联用提高了整体蛋白质的鉴定灵敏度和覆盖度。非变性质谱(native MS)是一种在近生理条件下从完整蛋白质复合物水平上进行分析的质谱技术。CE与非变性质谱联用已被尝试用于蛋白质复合体的分离鉴定。该文引用了与CE-MS和蛋白质组学应用相关的93篇文献,综述了以上介绍的CE-MS的研究进展以及在蛋白质组学分析中的应用优势,并总结和展望了其应用前景。  相似文献   

4.
高通量蛋白质组学分析研究进展   总被引:1,自引:0,他引:1  
吴琼  隋欣桐  田瑞军 《色谱》2021,39(2):112-117
基于质谱的蛋白质组学技术已经日趋成熟,可以对细胞和组织中的成千上万种蛋白质进行全面的定性和定量分析,逐步实现“深度覆盖”。随着生物医学日益增长的大队列蛋白质组学分析需求,如何在保持较为理想的覆盖深度下实现短时间、快速的“高通量”蛋白质组学分析已成为当前亟需解决的关键问题之一。常规的蛋白质组学分析流程通常包括样品前处理、色谱分离、质谱检测和数据分析。该文从以上4个方面展开介绍近10年以来高通量蛋白质组学分析技术取得的一系列研究进展,主要包括:(1)基于高通量、自动化移液工作站的蛋白质组样品前处理方法;(2)基于微升流速液相色谱与质谱联用的高通量蛋白质组检测方法;(3)利用灵敏度高、扫描速度快的质谱仪实现短色谱梯度分离下蛋白质组深度覆盖的分析方法;(4)基于人工智能、深度神经网络、机器学习等的蛋白质组学大数据分析方法。此外,对高通量蛋白质组学面临的挑战及其发展进行展望。总而言之,预期在不久的将来高通量蛋白质组学技术将会逐步“落地转化”,成为大队列蛋白质组学分析的利器。  相似文献   

5.
蛋白质组学已经成为生命科学研究中最为活跃的领域之一。研究蛋白质的生物功能,不但需要高通量的鉴定蛋白质,还需要定量分析动态变化的蛋白质,即定量蛋白质组学研究。蛋白质的定量研究有助于发现新的生物功能,并可以用于疾病的预警和药物靶点的发现。现有的定量蛋白质组学研究主要利用同位素标记结合生物质谱(电喷雾电离质谱ESI-MS,基质辅助激光解吸电离质谱MALDI-MS)技术而实现。近年来电感耦合等离子体质谱(ICP-MS)作为ESI-MS和MALDI-MS的补充,越来越多地应用于蛋白质的定量分析,特别是蛋白质的绝对定量分析。ICP-MS是检测生物分子中痕量元素的理想工具,具有灵敏度高、动态范围广,不易受基体的影响等优点。本文将讨论基于ICP-MS的分析方法,及其在蛋白质定量分析和免疫分析中的部分成功应用。  相似文献   

6.
秦少杰  白玉  刘虎威 《色谱》2021,39(2):142-151
细胞是生命体的最小组成单位,遗传及外部环境等因素使单细胞异质性广泛存在于众多生物体中。传统的生物学实验获得的结果多是大量细胞的平均测量值,因此在单细胞层面开展研究对于精确理解细胞的生长发育以及疾病的诊断与治疗至关重要。而作为重要的细胞和生命活动的执行者,蛋白质由于其不具备扩增特性,且种类繁多、丰度低、动态分布范围宽,与核酸等其他生物大分子相比,其单细胞组学研究相对滞后。而在所有的检测手段中,荧光检测以及电化学分析方法具有极高的灵敏度,但是囿于其研究通量有限,以及电化学活性依赖,很难成为普适性的单细胞蛋白质组学研究方法。质谱分析作为传统蛋白质组学中最为核心的研究技术,由于其高灵敏、高通量、结构信息丰富等特点,在单细胞蛋白质组学研究中独树一帜。该文综述了近年来基于质谱的单细胞蛋白质组学研究中的代表性方法,根据质谱分析前蛋白质分离方式的差异,将其分为基于毛细管电泳分离、液相色谱分离和无分离手段的直接检测3类方法,在介绍研究现状的同时对这些方法在细胞通量、蛋白质鉴定数目、灵敏度以及方法应用方面进行了总结与比较。最后,基于目前研究中面临的挑战以及发展趋势对基于质谱的单细胞蛋白质组学的研究前景进行了展望。  相似文献   

7.
张莹  杨芃原  陆豪杰 《色谱》2013,31(6):503-509
定量蛋白质组学已经成为蛋白质组学的一个重要分支,以生物质谱为核心的定量蛋白质组方法日益发展。按照定量所依据的质谱信号来源于一级质谱谱图还是多级质谱谱图可以将定量蛋白质组方法分为一级质谱定量和多级质谱定量。本文主要综述基于多级质谱的定量方法和技术进展,分析比较了这些方法的优缺点,并对基于多级质谱的定量方法发展进行了展望。  相似文献   

8.
鸟枪法串联质谱蛋白质鉴定是蛋白质组学研究中广泛采用的策略。然而,蛋白质组样品的高复杂性、宽动态范围分布使得低丰度肽段以及难于离子化肽段的质谱检测仍然存在着巨大的挑战。为了提高质谱检测灵敏度,通过化学衍生技术在多肽中引入易于离子化的小分子标签的方法获得了广泛关注。本文综述了近年来应用于多肽及其翻译后修饰的化学衍生试剂,侧重其在高灵敏度质谱分析中的应用进展,并展望了化学衍生技术的发展方向及其在蛋白质组学中的应用前景。  相似文献   

9.
随着蛋白质组研究和生物质谱技术的发展,大规模的蛋白质组相对定量和绝对定量已经成为了解生命活动进程、疾病发生发展过程以及生物标志物筛选和验证的重要策略,并形成蛋白质组学研究领域的一个重要分支:定量蛋白质组学.综述了近年来定量蛋白质组学的研究进展,并对其中的关键技术进行讨论.  相似文献   

10.
刘璐瑶  秦洪强  叶明亮 《色谱》2021,39(10):1045-1054
蛋白质糖基化是生物体内最重要的翻译后修饰之一,在蛋白质稳定性、细胞内和细胞间信号转导、激素活化或失活和免疫调节等生理过程和病理进程中发挥重要作用。而异常的蛋白质糖基化往往和多种疾病的发生发展密切相关,目前应用于临床检测的多种肿瘤生物标志物大多属于糖蛋白或者糖抗原。因此在组学层次系统分析蛋白质糖基化的变化对阐明生物体内糖基化修饰的调控机理和发现新型疾病标志物都非常重要。基于质谱的蛋白质组学技术为全面分析蛋白质及其修饰提供了有效的分析手段。在自下而上的蛋白质组学研究中,由于完整糖基化肽段同时存在性质各异的肽段骨架和糖链结构、糖肽的相对丰度和离子化效率较低以及糖基化修饰有高度异质性等特点,完整糖肽的分析比其他翻译后修饰更加困难。近年来,为了更全面、系统地分析蛋白质糖基化,研究人员发展了一些新技术,包括完整糖肽的富集技术、质谱的碎裂模式和数据采集模式、质谱数据的解析方法和定量策略等等,大力推进了该领域的研究水平,也为研究蛋白质糖基化相关的生物标志物提供了技术支持。该篇综述主要关注近年来基于质谱的糖蛋白质组学研究中的新进展,重点介绍针对完整N-和O-糖基化肽段的富集新技术和谱图解析新方法,并讨论其在肿瘤早期诊断方面的应用潜力。  相似文献   

11.
12.
Limitations of current proteomics technologies   总被引:9,自引:0,他引:9  
Application of proteomics technologies in the investigation of biological systems creates new possibilities in the elucidation of biopathomechanisms and the discovery of novel drug targets and early disease markers. A proteomic analysis involves protein separation and protein identification as well as characterization of the post-translational modifications. Proteomics has been applied in the investigation of various disorders, like neurological diseases, and the application has resulted in the detection of a large number of differences in the levels and the modifications of proteins between healthy and diseased states. However, the current proteomics technologies are still under development and show certain limitations. In this article, we discuss the major drawbacks and pitfalls of proteomics we have observed in our laboratory and in particular during the application of proteomics technologies in the investigation of the brain.  相似文献   

13.
蛋白质组的分离与分析及其应用进展   总被引:13,自引:0,他引:13  
蛋白质组学正在成为分析化学研究的热点。本文综述了蛋白质组的高通量分离和分析技术,包括双向凝胶电泳、生物质谱、二维谱新技术和蛋白芯片的发展现状以及蛋白质组学的最新应用进展,并展望了分析化学在蛋白质组学领域今后的发展。  相似文献   

14.
Proteomics represents a significant challenge to separation scientists because of the diversity and complexity of proteins and peptides present in biological systems. Mass spectrometry as the central enabling technology in proteomics allows detection and identification of thousands of proteins and peptides in a single experiment. Liquid chromatography is recognized as an indispensable tool in proteomics research since it provides high-speed, high-resolution and high-sensitivity separation of macromolecules. In addition, the unique features of chromatography enable the detection of low-abundance species such as post-translationally modified proteins. Components such as phosphorylated proteins are often present in complex mixtures at vanishingly small concentrations. New chromatographic methods are needed to solve these analytical challenges, which are clearly formidable, but not insurmountable. This review covers recent advances in liquid chromatography, as it has impacted the area of proteomics. The future prospects for emerging chromatographic technologies such as monolithic capillary columns, high temperature chromatography and capillary electrochromatography are discussed.  相似文献   

15.
Proteomics is a research field aiming to characterize molecular and cellular dynamics in protein expression and function on a global level. The introduction of proteomics has been greatly broadening our view and accelerating our path in various medical researches. The most significant advantage of proteomics is its ability to examine a whole proteome or sub-proteome in a single experiment so that the protein alterations corresponding to a pathological or biochemical condition at a given time c…  相似文献   

16.
蛋白质组学技术前沿进展   总被引:3,自引:0,他引:3  
赵群  张丽华  张玉奎 《应用化学》2018,35(9):977-983
蛋白质组学是以生物体系整体蛋白质为研究对象的新的研究领域,已经成为后基因时代中生命科学最重要研究方向之一。 近年来,蛋白质组学研究取得了令人鼓舞的进展,一系列新技术与新方法得到了快速的发展。 本文总结了2013年以来蛋白质组学研究的有关新技术,并对其发展进行了展望。  相似文献   

17.
Drug discovery and early-stage drugs and biomarkers development is a continuous adaptation and maturation process. The cycle of changes based on new findings is coupled with shifts in research priorities and make this part of pharmaceutical research a challenging endeavour. Over the last years, the emphasis on genomics has shifted to proteomics, the science of understanding how proteins translate gene information into function, and metabonomics, the science of small metabolites that are further apart from genomic projects. Proteomics describes the analysis of the protein complement of a biological sample with respect to temporal and spatial resolution. This technology is based on separation of complex protein mixtures by 2D gel-electrophoresis, in gel digest and mass spectrometric analysis of the protein fragments. Proteomics has been recently flanked by peptidomics, a new research direction aimed at the comprehensive analysis of small (1-20 kDa) polypeptides, thus covering the gap between proteomics and metabonomics. The refinement of peptidomics is based on an essential paradigm related to modularity and diversity. Peptides are a paramount example of how one single gene can release multiple functionalities. We can expect fast progress in understanding protein and peptide networks from a systems biology approach ending in the discovery of new peptide targets. However, the way from a complex sample to potential diagnostic and therapeutic targets will depend on technological developments and from the ability to discriminate true disease-related signals from false positive and negative signals, and the way from target discovery to target validation will not be short.  相似文献   

18.
Mass spectrometry has arguably become the core technology for the characterization of food proteins and peptides. The application of mass spectrometry-based techniques for the qualitative and quantitative analysis of the complex protein mixtures contained in most food preparations is playing a decisive role in the understanding of their nature, structure, functional properties and impact on human health. The application of mass spectrometry to protein analysis has been revolutionized in the recent years by the development of soft ionization techniques such as electrospray ionization and matrix assisted laser desorption/ionization, and by the introduction of multi-stage and ‘hybrid’ analyzers able to generate de novo amino acid sequence information. The interfacing of mass spectrometry with protein databases has resulted in entirely new possibilities of protein characterization, including the high sensitivity mapping (femtomole to attomole levels) of post-translational and other chemical modifications, protein conformations and protein–protein and protein–ligand interactions, and in general for proteomic studies, building up the core platform of modern proteomic science. MS-based strategies to food and nutrition proteomics are now capable to address a wide range of analytical questions which include issues related to food quality and safety, certification and traceability of (typical) products, and to the definition of the structure/function relationship of food proteins and peptides. These different aspects are necessarily interconnected and can be effectively understood and elucidated only by use of integrated, up-to-date analytical approaches. In this review, the main aspects of current and perspective applications of mass spectrometry and proteomic technologies to the structural characterization of food proteins are presented, with focus on issues related to their detection, identification, and quantification, relevant for their biochemical, technological and toxicological aspects.  相似文献   

19.
于文皓  祁艳霞  靳艳 《色谱》2019,37(5):471-476
人乳是新生儿最理想的天然食物,蛋白质是人乳中最主要的营养成分之一。随着蛋白质组学技术的发展,利用蛋白质组学的方法研究人乳蛋白质也取得了一些研究成果。本文综述了近年来蛋白质组学技术在人乳蛋白质研究中的应用,分别从人乳蛋白质的组成研究、动态变化、人乳与其他来源乳汁的蛋白质差异比较、人乳磷酸化蛋白和糖基化蛋白研究、人乳内源肽的研究及人乳蛋白与疾病等几个方面进行了阐述。蛋白质组学技术使人乳蛋白质的研究进入了微量营养研究的时代,人乳蛋白质组学的研究成果将为母婴健康提供更好的保障。  相似文献   

20.
Proteomics technology has the potential to identify groups of proteins that have similar biological function. However, few attempts have been made to identify and characterize metal-binding proteins by using proteomics strategies. Many transition metals are essential to sustain life. Copper, iron, and zinc are the most abundant transition metals relevant to biological systems. In addition to their important biological functions, metals can also catalyze the formation of damaging free radical species. Hence, their intracellular transport is tightly regulated. Despite recent insights into the intracellular transport of copper and other metals, our overall understanding of intracellular metal metabolism remains incomplete and it is likely that many metal-binding proteins remain undiscovered. Furthermore, the protein targets for metals during metal-associated disease states or during exposure to toxic levels of environmental metals are yet to be unravelled. A proteomics strategy for the analysis of metal-transporting or metal-binding proteins has the potential to uncover how a large number of proteins function in normal or metal-associated diseased states. Here we discuss the principal aspects of metal metabolism, and the recent developments in the area of the proteomics of metal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号