首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We discuss the possibility that the recent detection of 511 keV gamma rays from the galactic bulge, as observed by INTEGRAL, is a consequence of low mass (1-100 MeV) particle dark matter annihilations. We discuss the type of halo profile favored by the observations as well as the size of the annihilation cross section needed to account for the signal. We find that such a scenario is consistent with the observed dark matter relic density and other constraints from astrophysics and particle physics.  相似文献   

2.
The Galactic positrons, as observed by their annihilation gamma-ray line at 0.511 MeV, are difficult to account for with astrophysical sources. It has been proposed that they are produced instead by dark matter annihilation or decay in the inner Galactic halo. To avoid other constraints, these processes are required to occur "invisibly," such that the eventual positron annihilation is the only detectable signal. However, electromagnetic radiative corrections to these processes inevitably produce real gamma rays ("internal bremsstrahlung"); this emission violates COMPTEL and EGRET constraints unless the dark matter mass is less than about 20 MeV.  相似文献   

3.
We discuss the possibility that the recent detection of 511 keV gamma rays from the galactic bulge, as observed by the International Gamma-Ray Astrophysics Laboratory, can be naturally explained by the supermassive very dense droplets (strangelets) of dark matter. These droplets are assumed to be made of ordinary light quarks (or antiquarks) condensed in a nonhadronic color superconducting phase. The droplets can carry electrons (or positrons) in the bulk or/and on the surface. The e(+)e(-) annihilation events take place due to the collisions of electrons from the visible matter with positrons from dark matter droplets which may result in the bright 511 keV gamma-ray line from the bulge of the Galaxy.  相似文献   

4.
The Sagittarius dwarf tidal stream may be showering dark matter onto the solar neighborhood, which can change the results and interpretation of direct detection searches for weakly interacting massive particles (WIMPs). Stars in the stream may already have been detected in the solar neighborhood, and the dark matter in the stream is (0.3-25)% of the local density. Experiments should see an annually modulated steplike feature in the energy recoil spectrum that would be a smoking gun for WIMP detection. The total count rate in detectors is not a cosine curve in time and peaks at a different time of year than the standard case.  相似文献   

5.
It has been suggested that the pair annihilation of dark matter particles chi with mass between 0.5 and 20 MeV into e+e- pairs could be responsible for the excess flux (detected by the INTEGRAL satellite) of 511 keV photons coming from the central region of our Galaxy. The simplest way to achieve the required cross section while respecting existing constraints is to introduce a new vector boson U with mass M(U) below a few hundred MeV. We point out that over most of the allowed parameter space, the process e+e--->U(gamma), followed by the decay of U into either an e+e- pair or an invisible (nu(-)nu or chi(-)chi) channel, should lead to signals detectable by current B-factory experiments. A smaller, but still substantial, region of parameter space can also be probed at the Phi factory DAPhiNE.  相似文献   

6.
We discuss astrophysical implications of the modified gravity model in which the two matter components, ordinary and dark, couple to separate gravitational fields that mix to each other through small mass terms. There are two spin-2 eigenstates: the massless graviton, which induces universal Newtonian attraction, and the massive one, which gives rise to the Yukawa-like potential which is repulsive between the ordinary and dark bodies. As a result for distances much smaller than the Yukawa radius r m the gravitation strength between the two types of matter becomes vanishing. If r m ~10 kpc, the typical size of a galaxy, there are interesting implications for the nature of dark matter. In particular, one can avoid the problem of the cusp that is typical for the cold dark matter halos. Interestingly, the flat shape of the rotational curves can be explained even in the case of the collisional and dissipative dark matter (as e.g. mirror matter), which cannot give the extended halos but instead must form galactic discs similarly to the visible matter. The observed rotational curves for the large, medium-size and dwarf galaxies can be nicely reproduced. We also briefly discuss possible implications for the direct search of dark matter.  相似文献   

7.
Galaxy hierarchical formation theories, numerical simulations, the discovery of the Sagittarius Dwarf Elliptical Galaxy (SagDEG) in 1994 and more recent investigations suggest that the dark halo of the Milky Way can have a rich phenomenology containing non-thermalized substructures. In the present preliminary study, we investigate the case of the SagDEG (the best known satellite galaxy in the Milky Way crossing the solar neighborhood) analyzing the consequences of its dark matter stream contribution to the galactic halo on the basis of the DAMA/NaI annual modulation data. The present analysis is restricted to some WIMP candidates and to some of the astrophysical, nuclear and particle physics scenarios. Other candidates such as e.g. the light bosonic ones we discussed elsewhere, and other non-thermalized substructures are not yet addressed here. PACS 95.35.+d  相似文献   

8.
We propose a strategy for how to look for dark matter particles possessing a radiative decay channel and derive constraints on their parameters from observations of x rays from our own Galaxy and its dwarf satellites. When applied to sterile neutrinos in the keV mass range this approach gives a significant improvement to restrictions on neutrino parameters compared with previous works.  相似文献   

9.
A. D. Avrorin  A. V. Avrorin  V. M. Aynutdinov  R. Bannasch  I. A. Belolaptikov  V. B. Brudanin  N. M. Budnev  I. A. Danilchenko  S. V. Demidov  G. V. Domogatsky  A. A. Doroshenko  R. Dvornicky  A. N. Dyachok  Zh.-A. M. Dzhilkibaev  L. Fajt  S. V. Fialkovsky  R. R. Gafarov  O. N. Gaponenko  K. V. Golubkov  T. I. Gress  Z. Honz  K. G. Kebkal  O. G. Kebkal  K. V. Konishchev  A. V. Korobchenko  A. P. Koshechkin  F. K. Koshel  A. V. Kozhin  V. F. Kulepov  D. A. Kuleshov  M. V. Milenin  R. A. Mirgazov  E. A. Osipova  A. I. Panfilov  L. V. Pan’kov  E. N. Pliskovsky  M. I. Rozanov  E. V. Rjabov  B. A. Shaybonov  A. A. Sheifler  M. D. Shelepov  A. V. Skurihin  O. V. Suvorova  V. A. Tabolenko  B. A. Tarashchansky  S. A. Yakovlev  A. V. Zagorodnikov  V. L. Zurbanov 《Journal of Experimental and Theoretical Physics》2017,125(1):80-90
We have analyzed the neutrino events recoded in the deep-water neutrino experiment NT200 in Lake Baikal in five years of observations toward dark dwarf spheroidal galaxies (dSphs) in the southern hemisphere and the Large Magellanic Cloud (LMC). This analysis completes the series of works based on NT200 data in the search for a dark matter annihilation signal in astrophysical objects. We have found no significant excess in the number of observed events relative to the expected background from atmospheric neutrinos in all tested directions, in 22 dSphs and the LMC. For a sample of five selected dwarf galaxies we have performed a joint analysis of the data by the maximum likelihood method. We have obtained a correspondence of the observational data to the null hypothesis about the presence of only background events and established 90% confidence-level upper limits for the annihilation cross sections of dark matter particles with a mass from 30 GeV to 10 TeV in several annihilation channels both in the joint analysis of the selected sample of galaxies and in the analysis toward the LMC. The strongest constraints at a level of 7 × 10–21 cm3 s–1 have been obtained for the direction toward the LMC in the channel of annihilation into a pair of neutrinos.  相似文献   

10.
The existence of dark matter is undisputed, while the nature of it is still unknown. Explaining dark matter with the existence of a new unobserved particle is among the most promising possible solutions. Recently dark matter candidates in the MeV mass region received more and more interest. In comparison to the mass region between a few GeV to several TeV, this region is experimentally largely unexplored. We discuss the application of a RNDR DEPFET semiconductor detector for direct searches for dark matter in the MeV mass region. We present the working principle of the RNDR DEPFET devices and review the performance obtained by previously performed prototype measurements. The future potential of the technology as dark matter detector is discussed and the sensitivity for MeV dark matter detection with RNDR DEPFET sensors is presented. Under the assumption of six background events in the region of interest and an exposure of 1 kg year a sensitivity of about \(\overline{\sigma }_{e} = 10^{-41}\,{\mathrm {cm}}^2\) for dark matter particles with a mass of 10 MeV can be reached.  相似文献   

11.
If dark matter is composed of massive bosons, a Bose–Einstein condensation process must have occurred during the cosmological evolution. Therefore galactic dark matter may be in a form of a condensate, characterized by a strong self-interaction. We consider the effects of rotation on the Bose–Einstein condensate dark matter halos, and we investigate how rotation might influence their astrophysical properties. In order to describe the condensate we use the Gross–Pitaevskii equation, and the Thomas–Fermi approximation, which predicts a polytropic equation of state with polytropic index \(n=1\). By assuming a rigid body rotation for the halo, with the use of the hydrodynamic representation of the Gross–Pitaevskii equation we obtain the basic equation describing the density distribution of the rotating condensate. We obtain the general solutions for the condensed dark matter density, and we derive the general representations for the mass distribution, boundary (radius), potential energy, velocity dispersion, tangential velocity and for the logarithmic density and velocity slopes, respectively. Explicit expressions for the radius, mass, and tangential velocity are obtained in the first order of approximation, under the assumption of slow rotation. In order to compare our results with the observations we fit the theoretical expressions of the tangential velocity of massive test particles moving in rotating Bose–Einstein condensate dark halos with the data of 12 dwarf galaxies and the Milky Way, respectively.  相似文献   

12.
Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory, up to global Lorentz rotations, the reference system is determined by the motion of cosmic matter. Thus, one is led to a Riemannian space with teleparallelism realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms, where the existence of hidden matter is inferred solely from its gravitational effects. It is argued that, in the nonrelativistic mechanical approximation, they provide an inertia-free mechanics, where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted from the Newtonian point of view, this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.  相似文献   

13.
The 21Na(p,gamma)22Mg reaction is expected to play an important role in the nucleosynthesis of 22Na in oxygen-neon novae. The decay of 22Na leads to the emission of a characteristic 1.275 MeV gamma-ray line. This report provides the first direct measurement of the rate of this reaction using a radioactive 21Na beam, and discusses its astrophysical implications. The energy of the important state was measured to be E(c.m.)=205.7+/-0.5 keV with a resonance strength omegagamma=1.03+/-0.16(stat)+/-0.14(sys) meV.  相似文献   

14.
Absolute cross sections have been measured for the reaction 48Ca(p, γ)49Sc for 0.579 MeV ≦ Ep, lab ≦ 2.670 MeV and for the reaction 48Ca(p, n)48Sc for 0.956 MeV ≦ Ep, lab ≦ 2.670 MeV. Substantial competition effects in the cross section for 48Ca(p, γ)49Sc were observed at the thresholds for neutron emission to the 623 keV (3+), 1143 keV (2+) and 1402 keV (2?) excited states of 48Sc. Thermonuclear reaction rates were calculated from the measured cross sections for 0.1 ≦ T9 ≦ 10.0. The new rates differ considerably from those used in earlier calculations of the production of the rare, neutron-rich intermediate mass nuclides during explosive carbon burning. In particular, the new rates may change the predicted abundances for 48Ca, 49, 50Ti and 50V substantially. The good agreement between current global Hauser-Feshbach models and the experimental data indicates that Hauser-Feshbach calculations can provide sufficiently reliable rates for astrophysical calculations in cases where experimental data are non-existent.  相似文献   

15.
We propose a quasi-degenerate dark matter scenario to simultaneously explain the 1.4 Te V peak in the high-energy cosmic-ray electron-positron spectrum reported by the DAMPE collaboration very recently and the 3.5 ke V X-ray line observed in galaxies clusters and from the Galactic centre and confirmed by the Chandra and Nu STAR satellites. We consider a dark S U(2)′× U(1)′gauge symmetry under which the dark matter is a Dirac fermion doublet composed of two S U(2)′doublets with non-trivial U(1)′charges. At the one-loop level the two dark fermion components can have a mass split as a result of the dark gauge symmetry breaking. Through the exchange of a mediator scalar doublet the two quasi-degenerate dark fermions can mostly annihilate into the electron-positron pairs at the tree level for explaining the 1.4 Te V positron anomaly, meanwhile, the heavy dark fermion can very slowly decay into the light dark fermion with a photon at the one-loop level for explaining the 3.5 ke V X-ray line. Our dark fermions can be also verified in the direct detection experiments.  相似文献   

16.
We have shown in a previous paper that stable electron-positron resonances (photonium) can account for the dark matter in the universe. In this paper we show that photonium in the galaxy will be dissociated by cosmic rays. We predict the intensity of the resulting 511 keV gamma rays as a test of the model. We find that the predictions exceed observations from the galactic center for model where the photonium has a similar distribution to the baryons. The predicted intensity is consistent with observations if the photonium is distributed in a large halo.One of us (JPV) acknowledges support from the U.S. Department of Energy under Grant DE-FG02-87ER40371, Division of High Energy and Nuclear Physics  相似文献   

17.
We study numerically the cooling of a young bare strange star and show that its thermal luminosity, mostly due to e(+)e(-) pair production from the quark surface, may be much higher than the Eddington limit. The mean energy of photons far from the strange star is approximately 10(2) keV or even more. This differs both qualitatively and quantitatively from the thermal emission from neutron stars and provides a definite observational signature for bare strange stars. It is shown that the energy gap of superconducting quark matter may be estimated from the light curves if it is in the range from approximately 0.5 MeV to a few MeV.  相似文献   

18.
The particle physics interpretation of the dark matter problem, which is intimately of cosmological and astrophysical nature, is going to be posed under deep scrutiny in the next years. From the particle physics side, accelerators like the LHC will deeply test theoretical ideas of new physics beyond the Standard Model, where particle candidates of dark matter are predicted to exist. From the astrophysical side, many probes are already providing a great deal of independent information on the foreseen signals which can be produced by the galactic or extra-galactic dark matter. In all this, cosmology plays a central role in determining the relevance and the basic properties of the particle dark matter candidate. The ultimate hope is the emergence of dark matter signals and the rise of a coherent picture of new physics from and at the crossing of particle physics, astrophysics and cosmology. A very ambitious and farreaching project, which will bring to a deeper level our understanding of the fundamental laws which rule the Universe.  相似文献   

19.
Fluorescent dark matter has been suggested as a possible explanation of both the 3.5 keV excess in the diffuse emission of the Perseus Cluster and of the deficit at the same energy in the central active galaxy within that cluster, NGC 1275. In this work we point out that such a dark matter candidate can be searched for at the new X-ray laser facilities that are currently being built and starting to operate around the world. We present one possible experimental set up where the laser is passed through a narrow cylinder lined with lead shielding. Fluorescent dark matter would be excited upon interaction with the laser photons and travel across the lead shielding to decay outside the cylinder, in a region which has been instrumented with X-ray detectors. For an instrumented length of 7 cm at the LCLS-II laser we expect \(\mathcal {O}\)(1–10) such events per week for parameters which explain the astronomical observations.  相似文献   

20.
Weakly interacting massive particles (WIMPs) can solve both the solar neutrino and dark matter problems. In this paper we show that a fourth generation Dirac neutrino with mass between 4–10 GeV, in conjunction with the standard, albeit light, Higgs with mass of order 400 MeV, is a candidate WIMP. We describe both the astrophysical and particle physics consequences of this new WIMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号