首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In magnetic tunnel junctions a highly spin-polarizing layer is usually exchange biased by an antiferromagnetic layer, an artificial antiferromagnetic layer system or a combination of both, while the magnetically soft layer is free to rotate. The use of a single layer of a hard magnetic material is rarely investigated up to now. In this paper, we present the electric and magnetic properties of tunnel junctions with a hard magnetic Co83Cr17 layer. The soft magnetic electrode consists of either a single Co layer or a Co/Ni80Fe20 bilayer. The magnetic anisotropy and coercive field HC of the CoCr layer depend on its thickness and the kind of the bottom layer (Cu or Ta) and can vary from HC=50–700 Oe. It is found that a thin Co cap layer also influences the hysteretic behavior. Furthermore, only small changes after annealing up to 450°C promise a high thermal stability for the application in magnetic tunnel junctions. Measurements of the tunnel magnetoresistance on large area junctions, however, show a strong magnetic coupling of the hard and soft electrodes.  相似文献   

2.
We study experimentally the current-driven magnetic excitations in symmetric Co/Cu/Co nanopillars. In contrast with all the previous observations where the current of only one polarity is capable of exciting a multilayer system saturated by an externally applied magnetic field, we observe that both polarities of the applied current trigger excitations in a symmetric multilayer. This may indicate that in symmetric structures the current propels high-frequency magnetic oscillations in all magnetic layers. We argue, however, that only one layer is excited in our multilayers but, interestingly, currents of opposite polarities excite different layers. This hypothesis is supported by modeling the spin accumulation in symmetric magnetic multilayers.  相似文献   

3.
Current-induced magnetization dynamics in Co/Cu/Co trilayer nanopillars (approximately 100 nm in diameter) have been studied experimentally at low temperatures for large applied fields perpendicular to the layers. At 4.2 K an abrupt and hysteretic increase in resistance is observed at high current densities for one polarity of the current, comparable to the giant magnetoresistance effect observed at low fields. A micromagnetic model that includes a spin-transfer torque suggests that the current induces a complete reversal of the thin Co layer to alignment antiparallel to the applied field--that is, to a state of maximum magnetic energy.  相似文献   

4.
We investigate the ferromagnetic resonance of Co/Cu/Co trilayers by use of AC-spin-transfer torque excitations. Magnetic structures are grown in a 6-μm-thick commercial nanoporous polycarbonate membranes by use of electrodeposition in a cobalt/copper single bath. We show that microwave magnetic excitations corresponding to the uniform mode of the two cobalt layers are electrically detected as a change of the DC voltage of the system.  相似文献   

5.
A novel mechanism is proposed for magnetization reversal by the current of magnetic junctions with two metallic ferromagnetic layers and thin separating nonmagnetic layer. The spin-polarized current flows perpendicularly to the interfaces between the ferromagnetic layers, in one of which the spins are pinned and in the other they are free. No domain structure is formed in the ferromagnetic layers. The current breaks spin equilibrium in the free layer, which manifests itself in the injection or extraction of spins. The nonequilibrium spins interact with the magnetization of the lattice due to the effective field of s-d exchange, which is current dependent. At currents exceeding a certain threshold value, this interaction leads to magnetization reversal. Two threshold currents for magnetization reversal have been obtained theoretically, which are reached as the current increases or decreases, respectively. Thus, the phenomenon of current hysteresis is found. The calculated results are in good agreement with experiments on magnetization reversal by current in three-layer junctions of composition Co(I)/Cu/Co(II) prepared in a pillar form.  相似文献   

6.
Co/Al2O3/Co magnetic tunnel junctions with an interfacial Cu layer have been investigated with in situ growth characterization and ex situ magnetotransport measurements. Cu interlayers grown on Co give an approximately exponential decay of the tunneling magnetoresistance with xi approximately 0.26 nm while those grown on Al2O3 have a decay length of 0.70 nm. The difference in decay lengths can be explained by different growth morphologies, and in this way clarifies a present disagreement in the literature. For monolayer coverage of Cu, we show that the tunneling spin polarization is suppressed by at least a factor of 2 compared to Co and beyond approximately 5 ML it becomes vanishingly small.  相似文献   

7.
Using thin film pillars approximately 100 nm in diameter, containing two Co layers of different thicknesses separated by a Cu spacer, we examine the process by which the scattering from the ferromagnetic layers of spin-polarized currents flowing perpendicular to the layers causes controlled reversal of the moment direction in the thin Co layer. The well-defined geometry permits a quantitative analysis of this spin-transfer effect, allowing tests of competing theories for the mechanism and also new insight concerning magnetic damping. When large magnetic fields are applied, the spin-polarized current no longer fully reverses the magnetic moment, but instead stimulates spin-wave excitations.  相似文献   

8.
Evidence for a current-induced spin-transfer torque effect has been investigated in a series of point contacts to single ferromagnetic layers. At specific current densities, abrupt resistance changes, similar to those attributed to current-induced spin-wave excitations in multilayers, have been observed for one current polarity. The critical current for these resistance changes depends linearly on the external field applied perpendicular to the layer. The observed effect is interpreted as a current-driven heterogeneous instability in an otherwise uniform ferromagnetic layer.  相似文献   

9.
利用脉冲激光溅射(PLD)和分子束外延(MBE)方法制备了超薄膜系统 Co/Pd/Cu(100).脉冲激 光溅射生长的单原子Pd层呈现了很好的二维生长模式.在这个Pd表面上,分子束外延生长的C o层直至12个原子层都表现了层-层生长模式.利用俄歇电子谱(AES)和低能电子衍射(LEED)研 究了该系统的表面结构.利用低温磁光克效应(MOKE)研究了系统的磁学性质.结构研究表明, Co层由于面内晶格失配应力而具有一个四方正交结构;与对比样品Co/Cu(100)的比较研究说 明Pd层的存在强烈地改善了Co膜的起始生长模式和结构.磁光克效应测量表明,Pd层的存在 改变了Co层的磁学性质. 关键词: 薄膜的磁性质 组织与形貌 界面磁性  相似文献   

10.
We present an x-ray magnetic circular dichroism (XMCD) study of Co/Cu and Fe/Cu multilayers, finding that the Cu atoms in these structures exhibit an induced magnetic moment in the d shell. The average Cu spin moment is shown to fall-off inversely with the thickness of the Cu layer. Further, for comparable Cu layer thicknesses, the Cu moments in Fe/Cu and Co/Cu multilayers are found to be nearly equal, despite the fact that the Cu layers in the Co/Cu multilayers are shown to be fee while those in the Fe/Cu structures are bcc. These observations suggest that the induced moment is primarily situated at the Co/Cu and Fe/Cu interfaces and is resultant from short range chemical hybridization between the ferromagnetic and Cu atoms. Results from a local spin density functional theory are presented and found to be in excellent agreement with experimental observations. These results indicate that the Cu d electrons play a central role in mediating the exchange coupling between successive ferromagnetic layers.  相似文献   

11.
We present a model of spin transport in a Co/Cu(1 1 1)/Co pseudo-spin-valve (PSV) structure where current is flowing in the current perpendicular-to-plane (CPP) geometry. The model considers ballistic spin-dependent transmission at the two Co–Cu interfaces, as well as diffusive spin relaxation within the Cu spacer and free Co layer. In the latter, the spin relaxation process is composed of the usual longitudinal spin relaxation due to spin flip scattering, as well as transverse spin relaxation due to spin precession. The resulting spin transfer torque exerted on the moments within the free Co layer is composed of two contributions, the main contribution coming from “absorbed” spins in the interfacial regions. The second contribution arises from the relaxation of spin accumulation within the free Co layer. The calculated critical current density for switching is estimated to be approximately between 3.3×107 and 1.1×108 A/cm2, which is in agreement with available experimental results.  相似文献   

12.
Interfacial density of states in magnetic tunnel junctions   总被引:1,自引:0,他引:1  
Large zero-bias resistance anomalies as well as a collapse of magnetoresistance were observed in Co/Al2O3/Co magnetic tunnel junctions with thin Cr interfacial layers. The tunnel magnetoresistance decays exponentially with nominal Cr interlayer thickness with a length scale of approximately 1 A more than twice as fast as for Cu interlayers. The strong suppression of magnetoresistance, as well as the zero-bias anomalies, can be understood by considering a strong spin-dependent modification of the density of states at Co/Cr interfaces. The role of the interfacial density of states is shown by the use of specially engineered structures. Similar effects are predicted and observed in junctions with Ru interfacial layers.  相似文献   

13.
We have studied magnetic switching by spin-polarized currents and also the magnetoresistance in sub-100-nm-diam thin-film Co/Cu/Co nanostructures, with the current flowing perpendicular to the plane of the films. By independently varying the thickness of all three layers and measuring the change of the switching currents, we test the theoretical models for spin-transfer switching. In addition, the changes in the switching current and magnetoresistance as a function of the Cu layer thickness give two independent measurements of the room-temperature spin-diffusion length in Cu.  相似文献   

14.
The oxidation states of Al-oxide layer and the leakage current density in coercive differential spin tunneling junctions Co/Al-oxide/Co have been investigated in order to clear the mechanism of the increasing resistance change. X-ray photoelectron spectroscopy analysis shows that the resistance change increases with decreasing unoxidized Al, which can be qualitatively explained by using first-principle band calculation based on linear-muffin-tin-orbital atomic-sphere-approximation method. The resistance change decreases with increasing leakage current density, which originates from Schottky effect. Reduction of unoxidized Al and leakage current density originating from Schottky effect is required to obtain the large resistance change in spin tunneling junctions.  相似文献   

15.
We describe complex variations in resistance of a Co/Cu multilayer, generated by injection of an adjustable dc current density ( approximately 10(9) A/cm(2)) via a point contact. We attribute these variations to coupling of current-induced spin waves to lattice vibrations, leading especially to current-driven resonant excitations of phonons. We propose a simple model to explain the observed structured behavior of the variations as a function of the applied current and magnetic field.  相似文献   

16.
Electronic and magnetic structures of ferromagnetic (FM)/non-magnetic (NM) and FM/antiferromagnetic (AF) bi-layer systems are calculated by the first principles approach. For the FM/NM system, we focus on the Co/Cu multi-layered structure whose interfacial layer is assumed to have a mixed composition of Co and Cu atoms, and show a possibility that Co atoms at the interface play a significant role as the spin-dependent scattering potentials. In the FM/AF system, we consider Fe or Co monolayer as FM layer and MnNi as AF layers. It is predicted that the Mn moments adjacent to FM layer are forced to align the FM moments, and those of under layer go gradually to anti-parallel alignment as in the bulk MnNi.  相似文献   

17.
Spin-transfer induced ultrafast precessional switching of magnetization in a Co/Cu/Co nanopillar device is studied. Micromagnetic calculations show that precessional magnetization switching occurs above a threshold current. The presence of interface uniaxial anisotropy in the Co-thin film free layer influences heavily the current and the energy required to initiate the switching in the device, and the speed of the precessional switching. The threshold current and the precessional switching time are significantly reduced by this effect.  相似文献   

18.
The present work discusses the successful electrodeposition of Cu/Co multilayers, exhibiting appreciable GMR of 12-14% at room temperature. The effect of individual Cu and Co layers on the magnitude and behavior of GMR has been studied. By varying the thickness of individual layers the field at which saturation in GMR is observed can be controlled. It was observed that for lower thicknesses of Co layer, the saturation fields are reduced below 1 kOe. The Cu layer thickness seems to control the nature of magnetic coupling and the saturation field, with the two showing a correlation.  相似文献   

19.
We have investigated the current-induced magnetization switching in an exchange-biased spin valve structure. By using an unpatterned antiferromagnetic layer to pin the fixed Co layer, we obtained a lower switching current density by a factor of 5 than a simple spin valve structure. For the application, it is important to know how to keep the spin polarization when the thicker layer is pinned by an antiferromagnet. The unpatterned pinned ferromagnetic lead can be a good solution for spin-transfer-torque-activated device. The effect of Cu buffer layer on the top of the thin Co and Ru buffer layer under the thick Co layer on the current-induced magnetization switching in cobalt-based trilayer spin valves was also investigated. The experimental results showed that the Ru buffer layer in combination with Cu buffer layer could induce a decrease in the critical switching current by 30%, and an increase in the absolute resistance change by 35%, which is caused by an improvement of a microstructure of a thicker Co polarizer.  相似文献   

20.
The properties of Nb/??-Si/Nb planar Josephson junctions with various degrees of doping of the amorphous silicon layer are experimentally studied. Tungsten is used as a doping impurity. The properties of the Josephson junctions are shown to change substantially when the degree of doping of the ??-Si layer changes: a current transport mechanism and the shape of the current-voltage characteristic of the junctions change. Josephson junctions with SNS-type conduction are formed in the case of a fully degenerate ??-Si layer. The properties of such junctions are described by a classical resistive model. Josephson junctions with a resonance mechanism of current transport through impurity centers are formed at a lower degree of doping of the ??-Si layer. The high-frequency properties of such junctions are shown to change. The experimental results demonstrate that these junctions are close to SINIS-type Josephson junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号