首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An attenuated total reflection (ATR) sensor for water-miscible organic solvents was constructed using a combination of sol-gel processing and integrated optical waveguide (IOW) technologies. The sensor consisted of single-mode, sol-gel based planar waveguide coated with a 40 nm thick, porous sol-gel indicator layer prepared from methyltriethoxysilane and doped with methyl red. The response of the senor to aqueous isopropyl alcohol (IPA) was investigated. Solvation of the indicator dye by IPA causes the absorbance spectrum to undergo a blue shift coupled with an increase in molar absorptivity. IPA was detected by measuring changes in ATR of the guided mode at 488 nm. A response curve extending from 1 to 100% (v/v) IPA in water was constructed for the sensor, from which a detection limit of 0.7% (v/v) IPA/water was estimated. Response and reversal times were typically less than one minute, making this sensor potentially attractive for on-line monitoring applications. The rapid response characteristics are attributable to relatively weak, reversible interactions between the indicator and analyte.  相似文献   

2.
Monitoring nitrite with optical sensing films   总被引:1,自引:0,他引:1  
A new, low-cost nitrite sensor was developed by immobilizing a direct indicator dye in an optical sensing film for food and environmental monitoring. This sensor was fabricated by binding Safranine O to a cellulose acetate film that had previously been subjected to an exhaustive base hydrolysis. The membrane has good durability (>12 months) and a short response time (<8 s). Nitrite can be determined for the range of 0.005-2.00 μg ml−1 with 3δ detection limits of 0.001 μg ml−1. The method is easy to perform and uses acetylcellulose as a carrier. The reagents used for the activity of the cellulose support are inexpensive, non-toxic and widely available.  相似文献   

3.
Wong FC  Ahmad M  Heng LY  Peng LB 《Talanta》2006,69(4):888-893
An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R2 = 0.98, n = 3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90 mM AChCl (R2 = 0.984, n = 6). The response time of the biosensor is 12 min. Based on the optimum incubation time of 15 min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7 mg/L of dichlorvos (17-85% inhibition, R2 = 0.991, n = 9). The detection limit for dichlorvos was 0.5 mg/L. The results of the analysis of 1.7-6.0 mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.  相似文献   

4.
本文采用溶胶凝胶法和包埋法分别将对pH值和湿度敏感的指示剂修饰在光纤纤芯表面,制成了具有较宽检测范围的光纤pH传感器和光纤湿度传感器。通过X射线能谱仪(EDX)对所制备的pH和湿度敏感膜的表面成分进行了分析,并采用光功率计对敏感膜进行了光学检测。结果表明:当pH值在4.5~13的范围内变化时,光输出功率与pH值近似呈线性变化规律;当相对湿度(RH)在25%~80%的范围内变化时,光输出功率与RH值近似呈线性变化规律,并且二者在其检测范围内均具有良好的可逆性。  相似文献   

5.
Kuswandi B  Fikriyah CI  Gani AA 《Talanta》2008,74(4):613-618
An optical fiber biosensor consisting of acetylcholinesterase (AChE) and bromothymol blue (BTB) doped sol-gel film was employed to detect organophosphate pesticide chlorpyrifos. The main advantage of this optical biosensor is the use of a single sol-gel film with immobilized AChE and BTB. The compatibility of this mixture (AChE and BTB) with the sol-gel matrix has prevented leaching of the film. The immobilization of the enzyme and indicator was simple without chemical modification. The biosensing element on single sol-gel film has been placed inside the flow-cell for flow system. In the presence of a constant AChE, a color change of the BTB and the measured reflected signal at wavelength 622nm could be related to the pesticide concentration in the sample solutions. The performance of optical biosensor in the flow system has been optimized, including chemical and physical parameters. The response time of the biosensor is 8min. A linear calibration curve of chlorpyrifos against the percentage inhibition of AChE was obtained from 0.05 to 2.0mg/L of chlorpyrifos (18-80% inhibition, R(2)=0.9869, n=6). The detection limit for chlorpyrifos was 0.04mg/L. The results of the analysis of 0.5-1.5mg/L of chlorpyrifos using this optical biosensor agreed well with chromatographic method.  相似文献   

6.
An optical fiber sensor for the continuous determination of hydrochloric acid is presented. It is based on the fluorescence quenching of a flavone containing copolymer membrane by hydrochloric acid. The quenching efficiency is greatly enhanced in the presence of Fe(III). This enhancement is attributed to the primary inner filter effect, as well as the formation of a complex between the 4′-N,N-dimethylaminoflavone group in the copolymer and the Fe(III) species extracted from hydrochloric acid solution. The optical response is linear and reversible for 0.10–6.00 mol L–1 HCl with a response time of the order of a second. The standard deviations for repeated alternative measurements of 0.20 and 2.00 mol L–1 hydrochloric acid are 0.32% and 0.46% (n = 10), respectively, indicating a good reproducibility. Because of the covalently bonding of the dye to polymer, the sensor exhibits also a good stability. Selectivity has also been evaluated for some potential interferents. The sensor in conjunction with a flow-injection system can be used for on-line determination of hydrochloric acid. Received: 15 January 1998 / Revised: 14 April 1998 / Accepted: 18 April 1998  相似文献   

7.
We present an optical sensor for the detection of aqueous amines obtained by incorporating chromoionophore XV (ETHT 4001) into sol-gel thin films. Acid- and base-catalyzed sol-gel processes were studied to prepare stable ormosil layers using various amounts of organically modified sol-gel precursor such as methyltriethoxysilane (MTriEOS). The sensor layers were coated with a protective layer of microporous white polytetrafluoroethylene (PTFE) in order to prevent interference from ions and ambient light. The measurements were carried out in a flow-through cell in the reflection mode. Acid-catalyzed ormosil layers (pH 1) based on the copolymerization of tetraethoxysilane (TEOS) and MTriEOS did not show any change in signal upon exposure to aqueous amine solutions, while base-catalyzed sensor layers (pH 3 and 13) showed significant changes in signal. The response time (t 100) for the base-catalyzed sensor layer L3 (pH 13) upon exposure to different solutions containing 0–608 mmol L−1 aqueous propylamine was 20–30 s, the regeneration time was 70 s and the detection limit was 0.1 mmol L−1. The sensor response was reproducible and reversible. The porous ormosil layers permit dry sensor storage conditions.  相似文献   

8.
A new optical fiber sensor was prepared for the determination of berberine in aqueous solution using a micrometer-sized flow-cell and a bifurcated optical fiber. The sensing is based on fluorescence quenching of 2-(4-diphenylyl)-6-phenylbenzoxazole (PBBO) in the PVC membrane. This process is accompanied by non-fluorescent ground-state complex formation. With this sensor, berberine can be determined in sample solutions from 2.42 × 10–5 mol L–1 to 6.04 × 10–7 mol L–1. Satisfactory reproducibility, reversibility, and short response times of less than 1 min are realized. The sensor also shows good selectivity over some common pharmaceutical species and alkali and alkali-earth metal salts, and can be used for the direct assay of berberine in commercial tablets. The results are in correspondence with those obtained by the pharmacopoeia method. Received: 4 April 1997 / Revised: 8 August 1997 / Accepted: 12 August 1997  相似文献   

9.
Keith J  Hess LC  Spendel WU  Cox JA  Pacey GE 《Talanta》2006,70(4):818-822
Sensors based on changes of refractive index in response to sorption of an analyte on the coating or film of a long period grating fiber (LPG) fiber have recently been reported. In most prior work the coating or film swelled during interaction with the analyte. The swelling mechanism produced a kinetic response that slowed both the sensor's time for steady-state measurement and the reversibility of the sensor. Here, the analytical utility of fabricating these nanometer thin films using the layer-by-layer (LBL) electrostatic assembly method is evaluated using CuII as the test analyte and Cibacron Blue as the reagent immobilized in the LBL assembly; a generation-4 poly(amidoamine) dendrimer served as the spacer in the assembly. Detection of 1.3 mg CuII L−1 was observed when six bilayers comprised the coating. The stable response was achieved with 0.6 mg L−1 in less than 1 min. When 0.1 M HCl was used as the rinsing solution, this LPG sensor was reversible and the signal to similar concentrations of CuII reproducible.  相似文献   

10.
A new optical fiber sensor was prepared for the determination of berberine in aqueous solution using a micrometer-sized flow-cell and a bifurcated optical fiber. The sensing is based on fluorescence quenching of 2-(4-diphenylyl)-6-phenylbenzoxazole (PBBO) in the PVC membrane. This process is accompanied by non-fluorescent ground-state complex formation. With this sensor, berberine can be determined in sample solutions from 2.42 × 10–5 mol L–1 to 6.04 × 10–7 mol L–1. Satisfactory reproducibility, reversibility, and short response times of less than 1 min are realized. The sensor also shows good selectivity over some common pharmaceutical species and alkali and alkali-earth metal salts, and can be used for the direct assay of berberine in commercial tablets. The results are in correspondence with those obtained by the pharmacopoeia method. Received: 4 April 1997 / Revised: 8 August 1997 / Accepted: 12 August 1997  相似文献   

11.
IntroductionIn recent years chemiluminescence (CL)biosensor prepared by immobilization of a sensitivereagent such as peroxidase or oxidase onto a solidmatrix has attracted much attention due to the highsensitivity of the chemiluminescent reaction of thesensitive reagent even with a simple instrument.Generally,CL biosensors can be divided into twocategories.One consists of hydrogen peroxide sen-sors prepared by immobilizing a kind of peroxidaseonto a suitable solid support[1,2 ] ,and the immo…  相似文献   

12.
This is for the first time that application of complex nanostructure is reported as pH indicator in PVC matrix. This new optical pH sensor was constructed based on incorporation of ZnLI2 complex nanostructure in PVC matrix. The synthesized nanostructure ZnLI2 complex was characterized by SEM and XRD technique. The membrane solution was speared on the glass plate to provide thin film and the membrane surface morphology was investigated via field emission scanning microscope (FE‐SEM) technique. Central composite design (CCD) combined with desirability function (DF) was applied to find the best experimental composition of membrane providing the highest absorbance. These conditions were found in correspondence with 3 mg of pH indicator, 3 mg of ionic additive and 1.5 mg/mg of DBP/PVC weight ratio. Under optimum conditions, the proposed pH sensor has two linear working ranges of 4 ‐ 8 at 393 nm (R2 = 0.9897) and 5 ‐ 8 (R2 = 0.9982) at 570 nm with response time of 4 min. The pKa of proposed pH optical sensor was calculated through three methods that found to be 5.63. The present optical sensor shows stability after 2 months without any significant divergence in response properties (less than 5% RSD). Furthermore, current pH optode was exhibited good repeatability (RSD = 1.14%) as well as reproducibility (RSD = 4.06%). No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0–0.5 M of sodium chloride. All above features indicated that the proposed sensor can be successfully used for detection of pH in solutions with different ionic strength.  相似文献   

13.
A new, low-cost nitrite sensor was developed by immobilizing a direct indicator dye in an optical sensing film for food and environmental monitoring. This sensor was fabricated by binding gallocyanine to a cellulose acetate film that had previously been subjected to an exhaustive base hydrolysis. The membrane has good durability (>6 months) and a short response time (<7 s). Nitrite can be determined for the range 0.008-1.50 microg/ml with 3delta detection limits of 1 ng/ml. The method is easy to perform and uses acetylcellulose as a carrier. The reagents used for activating the cellulose support are inexpensive, non-toxic and widely available.  相似文献   

14.
A chemical sensor based on the deflection of a surface modified silicon micro-cantilever is presented. A thin film of sol-gel was applied to one side of the micro-cantilever surface using a spin coating procedure. The sensor has been shown to give different responses to vapor phase analytes of varying chemical composition, as well as to varying concentrations of a given analyte. Ethanol, a highly polar molecule, exhibits a strong affinity for the polar sol-gel coating resulting in a large response; pentane, a non-polar hydrocarbon, shows very little response. The sol-gel coating has also been shown to function as a backbone for the immobilization of chemically selective phases on the cantilever surface. Reaction of the sol-gel film with chlorotriethoxysilane and subsequent capping of the remaining reactive surface silanols with hexamethyldisilizane increases the non-polar nature of the film. This results in an increase in the response of the sensor to non-polar analytes. The effects of film thickness and cantilever structure thickness on response were also investigated.  相似文献   

15.
A novel sextuple hydrogen‐bonding (HB) self‐assembly molecular heterodimer bearing an iridium complex as the indicator dye and two carbazoles as the reference dye, namely 6HB‐Irbt‐Cz , was synthesized, and its molecular structure was confirmed by 1H NMR, 13CNMR, TOF‐MS and 2D NMR. Because of the inefficient energy transfer process between the carbazole and iridium complex units, 6HB‐Irbt‐Cz exhibits distinct ?uorescence/phosphorescence dual emission in neat film state. More importantly, the neat film sample of 6HB‐Irbt‐Cz could display linear ratiometric optical response toward oxygen in the full oxygen concentration range from 0 to 100 vol%, together with good stability, reversibility and rapid response‐recovery times. Note that this represents the first discovery of neat‐film‐based oxygen sensor capable of showing strictly linear ratiometric Stern‐Volmer behavior in the oxygen concentration of 0–100 vol%.  相似文献   

16.
利用溶胶-凝胶法,研制出基于有机改性溶胶-凝胶膜的亚硝酸盐光学传感器.以甲基三乙氧基硅烷为有机交联剂,与正硅酸乙酯进行水解和缩聚,制备了酚藏花红包埋的有机-无机硅酸盐杂化材料,并采用旋涂法将其涂抹在显微镜载玻片上,形成薄膜.在酸性条件下,NO<'-><,2>与酚藏花红掺杂的溶胶-凝胶膜发生作用,使溶胶-凝胶膜从红色变为...  相似文献   

17.
An ammonia gas sensor chip was prepared by coating an electrochemically-etched porous Si rugate filter with a chitosan film that is crosslinked by glycidoxypropyltrimethoxysilane (GPTMS). The bromothylmol blue (BTB), a pH indicator, was loaded in the film as ammonia-sensing molecules. White light reflected from the porous Si has a narrow bandwidth spectrum with a peak at 610 nm. Monitoring reflective optical intensity at the peak position allows for direct, real-time observation of changes in the concentration of ammonia gas in air samples. The reflective optical intensity decreased linearly with increasing concentrations of ammonia gas over the range of 0–100 ppm. The lowest detection limit was 0.5 ppm for ammonia gas. At optimum conditions, the full response time of the ammonia gas sensor was less than 15 s. The sensor chip also exhibited a good long-term stability over 1 year. Therefore, the simple sensor design has potential application in miniaturized optical measurement for online ammonia gas detection.  相似文献   

18.
Hu YF  Zhang ZH  Zhang HB  Luo LJ  Yao SZ 《Talanta》2011,84(2):305-313
A sensitive and selective electrochemical sensor based on a polyaniline modified carbon electrode for the determination of l-phenylalanine has been proposed by utilizing β-cyclodextrin (β-CD) incorporated multi-walled carbon nanotube (MWNT) and imprinted sol-gel film. The electrochemical behavior of the sensor towards l-phenylalanine was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve. The surface morphologies of layer-by-layer assembly electrodes were displayed by scanning electron microscope (SEM). The response mechanism of the imprinted sensor for l-phenylalanine was based on the inclusion interaction of β-CD and molecular recognition capacity of the imprinted film for l-phenylalanine. A linear calibration plot was obtained covering the concentration range from 5.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.0 × 10−9 mol L−1. With excellent sensitivity, selectivity, stability, reproducibility and recovery, the electrochemical imprinted sensor was used to detect l-phenylalanine in blood plasma samples successfully.  相似文献   

19.
A novel small-volume fiber-optic evanescent-wave absorption sensor based on the Griess–Ilosvay reaction has been developed and evaluated for nitrite determination. The sensor was constructed by inserting a decladded optical fiber into a transparent capillary to form an annular column microchannel. The Evanescent wave (EW) field produced on the optical fiber core surface penetrated into the surrounding medium and interacted with the azo dye, which was generated by the reaction of nitrite and nitrite-sensitive reagents. The detector was designed to be parallel to the axis of the optical fiber. The defined absorbance was linear with the concentration of nitrite in the range from 0.05 to 10 mg L−1, and the detection limit was 0.02 mg L−1 (3σ) with the relative standard deviation (RSD) of 2.6% (n = 8). The present sensor was successfully used to determine nitrite in real samples of mineral water, tap water, rain water, and seawater. The results were consistent with the data obtained by standard spectrophotometric method, showing potential of the proposed sensor for practical application.   相似文献   

20.
SnO2 nanocrystalline material was prepared with a sol-gel process and thin films of the nanocrystalline SnO2 were coated on the surface of bent optical fiber cores for gas sensing. The UV/vis absorption spectrometry of the porous SnO2 coating on the surface of the bent optical fiber core exposed to reducing gases was investigated with a fiber optical spectrometric method. The SnO2 film causes optical absorption signal in UV region with peak absorption wavelength at around 320 nm when contacting H2-N2 samples at high temperatures. This SnO2 thin film does not respond to other reducing gases, such as CO, CH4 and other hydrocarbons, at high temperatures within the tested temperature range from 300 °C to 800 °C. The response of the sensing probe is fast (within seconds). Replenishing of the oxygen in tin oxide was demonstrated by switching the gas flow from H2-N2 mixture to pure nitrogen and compressed air. It takes about 20 min for the absorption signal to decrease to the baseline after the gas sample was switched to pure nitrogen, while the absorption signal decreased quickly (in 5 min) to the baseline after switching to compressed air. The adhesion of tin oxide thin films is found to be improved by pre-coating a thin layer of silica gel on the optical fiber. Adhesion increases due to increase interaction of optical fiber surface and the coated silica gel and tin oxide film. Optical absorption spectra of SnO2 coating doped with 5 wt% MoO3 were observed to change and red-shifted from 320 nm to 600 nm. SnO2 thin film promoted with 1 wt% Pt was found to be sensitive to CH4 containing gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号