首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conductances of trimethyltetradecylammonium bromide (TTAB)+triphenyltetradecylphosphonium bromide (TTPB) and TTAB+trimethylhexadecylammonium bromide (HTAB) over the entire mole fraction range of TTAB (alpha(TTAB)) were measured in water and in beta-cyclodextrin+water (CD+W) mixtures at fixed 4 and 8 mM of CD at 30 degrees C. The conductivity plots for both binary mixtures show a single break from which the mixed critical micelle concentration (cmc) and degree of micelle ionization (chi) were computed. From the slopes of the conductivity curves, the equivalent ionic conductivities of the monomeric (Lambda(m)), associated (Lambda(ass)), and the micelle (Lambda(mic)) states were calculated and discussed with respect to the surfactant-CD complexation in the whole mole fraction range of both surfactant binary mixtures. The association constant (K) between the respective monomeric surfactant and CD cavity of fixed 4 mM CD was computed by considering 1:1 association from the surface tension measurements. A comparison among the K values for HTAB-CD, TTAB-CD, and TTPB-CD shows that the former complexation is significantly stronger in comparison to the other ones due to the longer hydrophobic tail. The nonideality in mixed micelle formation in pure water was evaluated by using the regular solution theory, and it was observed that both binary mixtures exhibit close to ideal behavior. Copyright 2000 Academic Press.  相似文献   

2.
The conductances of sodium dodecylsulphate (SDS) + sodium decylsulfate (SDeS) and decyltrimethylammonium bromide (DeTAB) + tetradecyltrimethylammonium bromide (TTAB) over the entire mole fraction range of SDS (SDS) or DeTAB (DeTAB) were measured in water, 18-crown-6 ether + water (CR + W) and -cyclodextrin + water (CYC + W) mixtures at fixed 4 mM and 8 mM of CR or CYC in their respective binary mixtures at 30 °C. The conductivity plots for SDS + SDeS mixtures show a single break whereas two breaks are observed at most of the DeTAB for DeTAB + TTAB mixtures. From the break in the conductivity data, the mixed critical micellar concentration (cmc) and degree of counter-ion association () were computed. The first break corresponds to the classical cmc of TTAB is termed as the first cmc (C1) and the second break which is observed at concentrations about 4 times the first one, corresponding to the classical cmc of DeTAB and is considered to be the second cmc (C2). The non-ideality in SDS + SDeS mixtures has been evaluated by using the regular solution theory and it has been observed that the mixture is close to ideal in the absence and presence of additives. The variation in C1, C2 and 1, 2 for DeTAB + TTAB has been discussed in terms of the mixed micelle formation which are predominantly rich in the TTAB and DeTAB monomers respectively.  相似文献   

3.
Kinetic measurements were performed for the alkaline hydrolysis of brilliant green — a triphenylmethane dye used as a model compound for probing micellar rate effects. This reaction was studied both in the presence of tetradecyltrimethylammonium bromide (TTAB) and tetradecyltriphenylphosphonium bromide (TTPPBr) and also in binary mixtures of these surfactants at different mole fractions of each. All rate surfactant profiles were analyzed using the pseudo-phase model in order to obtain the regression parameters, including binding constants and rate constants in the micellar pseudo-phase. The reaction was catalyzed by both surfactants. The catalytic factor increases from about 10 for pure TTPPBr to about 38 for pure TTAB. Binding of BG to micellar surface is greater in pure TTAB than in pure TTPPBr but significantly reduced in the surfactant mixtures than in pure components. Reduction of the binding constant becomes more significant as the mole fraction of TTAB is increased in the mixture. The kinetic data have been analyzed in terms of models of Piszkiewicz and Raghavan-Srinivasan which are in good agreement.   相似文献   

4.
The conductances of tetradecyltrimethylammonium bromide (TTAB) + dodecyltrimethylammonium bromide (DTAB) mixtures over the entire mole fraction range of TTAB (αOITTAB) were measured in aqueous polyethylene glycol 1000 (PEG) containing 1, 2, 5 and 10 wt% of PEG at 30 °C. From the conductivity data, various micellar parameters were computed. The results have been explained on the basis of the medium effects as well as the adsorption of additive molecules at micelle-solution interface. The non-ideality in TTAB+DTAB mixtures was evaluated by using the regular solution theory and Motomura's formulation based on the excess thermodynamic quantities. It has been found that the regular solution interaction parameter (β) and micellar mole fraction (¯x m 2) remain almost unaffected even in the presence of upto 10 wt% of PEG. These results suggest that the additive remains only in the aqueous phase and perhaps only changing the environment surrounding the micelles by adsorbing at the micelle-solution interface.  相似文献   

5.
Various amounts of N,N-dimethylformamide (DMF) with the weight percentage of DMF varying within the range 0-20, were added to aqueous micellar solutions of hexadecyl-, tetradecyl-, and dodecyltrimethylammonium bromides (CTAB, TTAB, and DTAB, respectively). Information about changes in the critical micelle concentrations, in the micellar ionization degrees, in the aggregation numbers, and in the polarity of the interfacial region of micelles upon changing the weight percent of DMF was obtained through conductivity and fluorescence measurements. Surface tension measurements permitted the estimation of the Gordon parameter of the water-DMF mixtures. The thermodynamic and structural changes provoked by the addition of DMF to the cationic micellar solutions were evidenced through the micellar kinetic effects observed in the reaction methyl 4-nitrobenzenesulfonate + Br-, investigated in the water-DMF cationic micellar solutions. The pseudophase kinetic model was adequate to quantitatively rationalize the dependence of the observed rate constant on surfactant concentration as well as on the weight percent of DMF.  相似文献   

6.
Five binary water + C4Ej mixtures, water + n-C4E0, water + 2-C4E0, water + iso-C4E0, water + n-C4E1, and water + iso-C4E1, were chosen to perform the surface/interfacial tension measurements over the experimental temperature range from 10 to 85 degrees C at the normal pressure by using a homemade pendent drop/bubble tensiometer. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH(2i+1)(OCH2CH2)jOH. The wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase is systematically examined according to the wetting coefficient resulting from the experimental data of surface/interfacial tensions measurements. For those systems with a lower critical solution temperature, for example, water + n-C6E2, water + n-C4E1, and water + iso-C4E1, a wetting transition from partial wetting to nonwetting is always observed when the system is brought to close to its lower critical solution temperature. On the other hand, to start with a partial wetting CiEj-rich phase, a wetting transition from partial wetting to complete wetting is always observed when the system is driven to approach its upper critical solution temperature. The effect of hydrophobicity of CiEj on the wetting behavior of the CiEj-rich phase at the interface separating gas and the aqueous phase was carefully investigated by using five sets of mixtures: (1) water + n-C4E0, water + n-C5E0, and water + n-C6E0; (2) water + 2-C4E0 and water + 2-C5E0; (3) water + 2-C4E0 and water + n-C4E0; (4) water + n-C4E1, water + n-C5E1, and water + n-C6E1; (5) water + n-C4E0 and water + n-C4E1. The CiEj-rich phase would tend to drive away from complete wetting (or nonwetting) to partial wetting with an increase in the hydrophobicity of CiEj in the binary water + CiEj system. All the wetting behavior observed in the water + CiEj mixtures is consistent with the prediction of the critical point wetting theory of Cahn.  相似文献   

7.
Mixed micellization of dimeric cationic surfactants tetramethylene-1,4-bis(hexadecyldimethylammonium bromide)(16-4-16), hexamethylene-1,6-bis(hexadecyldimethylammonium bromide) (16-6-16) with monomeric cationic surfactants hexadecyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC), and tetradecyltrimethylammonium bromide (TTAB) have been studied by conductivity and steady-state fluorescence quenching techniques. The behavior of mixed systems, their compositions, and activities of the components have been analyzed in the light of Rubingh's regular solution theory. The results indicate synergism in the binary mixtures. Ideal and experimental critical micelle concentrations (i.e., cmc(*) and cmc) show nonideality, which is confirmed by beta values and activity coefficients. The micelle aggregation numbers (N(agg)), evaluated using steady-state fluorescence quenching at a total concentration of 2 mM for CTAB/16-4-16 or 16-6-16 and 5 mM for TTAB/16-4-16 or 16-6-16 systems, indicate that the contribution of conventional surfactants was always more than that of the geminis. The micropolarity, dielectric constant and binding constants (K(sv)) of mixed systems have also been evaluated from the ratios of respective peak intensities (I(1)/I(3) or I(0)/I(1)).  相似文献   

8.
The influence of isopropyl alcohol (IPA) on the size and composition of the mixed micelles in mixtures of tetradecyltrimethylammonium bromide (TTAB) and chlorhexidine digluconate (CG) has been determined as a function of the composition of the systems. The addition of 0.5 M and 1.0 M IPA had little significant effect on the composition of the mixed micelles as determined both by analysis of critical micelle concentration (CMC) data using a theoretical treatment based on excess thermodynamic quantities and by an empirical treatment of conductivity data. Static and quasielastic light scattering measurements showed a progressive decrease of the aggregation number and hydrodynamic radius of TTAB micelles on addition of IPA, but minimal changes in the properties of the small CG aggregates. The results show that the micellar weight in the TTAB/CG/IPA solutions is determined by the ratio of the surfactants in the system and for each TTAB/CG ratio decreases on addition of IPA.  相似文献   

9.
 The conductances of hexadecyltrimethylammonium bromide (HTAB) and tetradecyltrimethylammonium bromide (TTAB) mixtures over the entire mole fraction range of HTAB were measured in aqueous binary mixtures of ethylene glycol monomethyl ether, monoethyl ether, and monobutyl ether, and of diethylene glycol monomethyl ether and monoethyl ether containing 10–30 wt% additive in their respective binary mixtures at 30 °C. Each conductivity curve showed a single break over the whole mole fraction range of HTAB–TTAB mixtures. From the break in the conductivity curve, various micellar parameters were calculated and the results were discussed with respect to the alkoxyethanol's additive effect on the mixed micelle formation. The micellar parameters of HTAB, TTAB, and of their mixtures showed a strong dependence both on the amount as well as on the number of repeating units in the presence of ethylene glycol derivatives, whereas a significant dependence only on the amount of additive was observed in aqueous diethylene glycol derivatives. The results in the former case were attributed to the hydrophobic hydration of the mixed micelles by the ethylene glycol derivatives, which showed a large dependence on the increase in the alkyl chain length of the additive. The hydrophobic hydration was considerably reduced in the case of diethylene glycol derivatives owing to the presence of an extra ether oxygen. An evaluation of the nonideality in the HTAB–TTAB mixtures revealed that in spite of the strong hydrophobic hydration of the HTAB–TTAB mixtures by the alkoxyethanols, the mixed micelles remain almost free from the additive molecules. Received: 11 January 2000/Accepted: 14 April 2000  相似文献   

10.
 The conductances of trimethyltetradecylammonium bromide (TTAB) + trimethylhexa decylammonium bromide (HTAB) and TTAB + trimethyldodecylammonium bromide (DTAB) mixtures over the entire mole fraction range were measured in aqueous poly(vinyl pyrrolidone) (PVP) containing 1–10 wt% PVP at 30 °C. Each conductivity (κ) curve for the TTAB + HTAB mixtures showed two breaks corresponding to two aggregation processes over the whole mole fraction range, except in the case of pure TTAB, where a single break corresponding to the conventional critical micelle concentration (cmc) was observed. In the case of TTAB + DTAB mixtures, each κ curve at a particular mole fraction of TTAB showed only one break, which was quite close to a similar one in pure water. In TTAB + HTAB mixtures, the first break is called the critical aggregation concentration. It is close to the conventional cmc and is attributed to the polymer-free micelle formation, whereas the second break is due to the polymer-bound micellar aggregates. However, no polymer-bound micellar aggregation process was observed in the case of TTAB + DTAB mixtures. Therefore, the presence of micelle–PVP interactions in the TTAB + HTAB case have been attributed to the stronger hydrophobicity of HTAB or TTAB + HTAB micelles in comparison to that of single or mixed micelles of TTAB + DTAB mixtures. From the conductivity data, various micelle parameters in the presence of PVP have been computed and discussed in terms of micelle–polymer interactions. The mixing behavior of TTAB +  HTAB corresponding to the first break, and that of TTAB + DTAB mixtures in the presence of PVP, is close to ideal and is also identical to that in pure water. Received: 26 August 1999 Accepted: 6 November 1999  相似文献   

11.
The adsorption and condensed film formation on mercury at the negative potential region for binary mixtures of dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), cetyltrimethylammonium bromide (CTAB), octadecyltrimethylammonium bromide (OTAB) is studied in KBr at various temperatures from 5 to 45 °C. The formation of the CTAB condensed film is hindered with the addition of DTAB and TTAB. There are interactions between unlike hydrophobic chains. The strong interactions between the CTAB molecules do not take place when DTAB or TTAB is present above a certain concentration. This hindering is more pronounced in the case of TTAB compared to the same DTAB concentration, i.e. the increase of the chain length hinders the film formation. The initially adsorbed molecules play a templating role in the kinetics of the film formation and in the self-assembling of the molecules. The initial induction time strongly depends on the temperature. The less surface active CTAB can hinder the OTAB film formation in binary mixtures. Also, increased interaction between OTAB and CTAB can be observed, indicating synergy effects in the film formation in some cases. The temperature range that the film is formed can be changed using mixtures of surfactants. Thus, the development of the film can become impossible, more difficult or even easier. Hysteresis phenomena are observed. The capacity versus time curves in the case that condensed film is formed are treated with the Avrami plot formulation, giving values between 1.5 and 2 indicating a progressive one dimensional nucleation with constant growth rate or a decrease of the nucleation rate during the overall film formation. There is generally a marked effect of the chain length of the alkyl chain on the film formation.  相似文献   

12.
The conductances of sodium perfluorooctanoate (SPFO), sodium dodecylsulphate (SDS), dodecyltrimethylammonium bromide (DTAB), and tetradecyltrimethylammonium bromide (TTAB) in 18-crown-6 ether + water (CR+W), p-cyclodextrin + water (CY+W), and 1,10-phenanthroIine + water (Phen+W) mixtures with fixed 4 mM of each additive were determined over the temperature range of 5-55 °C. The conductivity plots for all the surfactants showed single break from which the critical micellization concentration (cmc) and degree of micelle ionization (x) were computed. From the pre and the post micellar slopes of the conductivity curves, the equivalent conductivities of the monomeric (Aass) and the micellar states (Amjc), respectively, were calculated and discussed with respect to the surfactant-additive complexation. It was observed that the micelle formation of all the ionic surfactants irrespective of the nature of their head groups were delayed in CYC+W in comparison to that in CR+W and Phen+W systems over the temperature range studied. The micelle formation of SPFO and SDS in CR+W and Phen+W systems showed stabilization of the respective micelles due to the adsorption of Na+-CR and Na+-Phen complexes at the micelle solution interface in comparison to that of DTAB and TTAB.  相似文献   

13.
A theoretical-experimental study for a set of 18 binary systems comprised of [bXmpy][BF(4)] (X=2-4) + 1,ω-Br(CH(2))(v)Br (v =ω=1-6) at a temperature of 298.15 K is presented. The solubility curves are determined for each binary system, establishing the intervals of measurement for the excess properties, H(E)(m) and V(E)(m). These properties are then determined for those systems that present a miscibility zone. Binary systems containing 1,ω-dibromoalkanes with ω=5,6 present reduced solubility intervals at the temperature of 298.15 K. However, the mixtures with 1,1-dibromomethane were totally miscible with the three isomers of 1-butyl-X-methylpyridinium tetrafluoroborate. Mixtures with dibromomethane present H(E)(m) <0, whereas H(E)(m) >0 for the other binary systems. Sigmoidal curves were observed for the V(E)(m) describing expansion and contraction processes for all the systems, except for the mixtures of [b2mpy][BF(4)] with the smaller dibromoalkanes, which present contraction effects. The COSMO-RS methodology was used to estimate the solubilities and the intermolecular interaction energies, giving an acceptable explanation of the behavioral structure of pure compounds and solutions.  相似文献   

14.
The ion-pair dissociation constants, K(D), of the ion-pair formed between chloropentamminecobalt(III) ion (CpX(2+)) and a variety of dicarboxylate ligands, have been determined from EMF measurements of a cell composed of glass and calomel electrodes. Measurements were made in water and in aqueous binary mixtures of ethyl alcohol, over a wide range of solvent composition (0-60 wt% ethyl alcohol), at six different temperatures (ranging from 30 to 55 degrees C at intervals of 5 degrees C). The thermodynamic parameters of association DeltaG(ass)(0), DeltaH(ass)(0) and DeltaS(ass)(0) have been calculated and discussed. DeltaH(ass)(0)-DeltaS(ass)(0), DeltaS(ass)(0)-DeltaS(1(or 2))(0), DeltaG(ass)(0)-G(1(or 2))(0) and DeltaH(ass)(0)-DeltaH(1(or 2))(0) correlations among different solvent media and different dicarboxylate ligands were examined (where 1 and 2 denote the first and the second dissociation reactions of the studied dicarboxylic acids). The pK(D) value has been correlated with the dielectric constant of the medium according to Born's equation.  相似文献   

15.
The conductances of cetylpyridinium chloride (CPyCl) + tetradecyltrimethylammonium bromide (TTAB) mixtures over the entire mole fraction range of CPyCl (xCPyCl) were measured in aqueous binary mixtures of polyethylene glycol 1000 (PEG 1000) containing 0.5, 1, 2, 5 and 10 wt% of PEG 1000 at 30°C. From the conductivity data, the critical micellar concentration (cmc), degree of counter ion association (χ) and the standard free energy of micelle formation (ΔGo M ) of CPyCl and TTAB were computed. The DGo M value is further divided into the hydrophobic contribution of free energy of transfer of the surfactant hydrocarbon chain from the medium to the micelle (ΔGo HP ), and the energy associated with the surface contributions (ΔGo s ) consisting of electrostatic interactions between the head groups and counter ions. Both contributions show a linear dependence on the amount of PEG additive. These results have been explained on the basis of the medium effects of aqueous PEG.

The mixed micelle formation by CPyCl+TTAB show non-ideal behavior which is quite similar in the absence, as well as in the presence, of PEG additive as evaluated by using the regular solution theory. The interaction parameter, b, is always negative and remains almost constant with respect to the amount of PEG additive. This indicates that the mixed micelle formation occurs mainly due to the synergistic interactions between the unlike surfactant monomers only.  相似文献   

16.
Forces have been measured between silica surfaces with adsorbed surfactants by means of a bimorph surface force apparatus. The surfactants used are the cationic surfactant tetradecyltrimethylammonium bromide (TTAB) and the nonionic surfactant hexakis(ethylene glycol) mono-n-tetradecyl ether (C(14)E(6)) as well as mixtures of these two surfactants. The measurements were made at elevated pH, and the effect of salt was studied. At high pH the glass surface is highly charged, which increases the adsorption of TTAB. Despite the low adsorption generally seen for nonionic surfactants on silica at high pH, addition of C(14)E(6) has a considerable effect on the surface forces between two glass surfaces in a TTAB solution. The barrier force is hardly affected, but the adhesion is reduced remarkably. Also, addition of salt decreases the adhesion, but increases the barrier force. In the presence of salt, addition of C(14)E(6) also increases the thickness of the adsorbed layer. The force barrier height is also shown to be related to literature values for surface pressure data in these systems.  相似文献   

17.
The ligand substitution reactions Fe(CN)(5)(4-(t)bupy)(3-) + 4-CNpy and Fe(CN)(5)(4-(t)bupy)(3-) + pzCO(2)(-) (4-(t)Bupy = 4-tert-butylpyridine; 4-CNpy = 4-cyanopyridine; pzCO(2)(-) = pyrazinecarboxylate) were studied in several aqueous salt and micellar solutions. Kinetic data in aqueous solutions showed that the two processes follow a dissociative mechanism, D, and the dependence of the first-order rate constants on [salt] on electrolyte aqueous solutions allow the estimation of the activation volumes corresponding to both reactions. Under true first-order conditions no kinetic micellar effects were found in anionic (SDS) and nonionic (Triton X-100) aqueous micellar solutions. In cationic micellar solutions (CTAB, CTAC, and TTAB) small kinetic micellar effects were found. These were related to the different ionic concentrations and the different polarity and structure of the Stern layer surrounding the cationic micellar aggregates, where the reactions take place, with respect to pure water. Copyright 2000 Academic Press.  相似文献   

18.
The electron paramagnetic resonance (EPR) study has been carried out for the micellar solutions of various ionic surfactant solutions as well as various generations of aqueous dendrimer both in their respective presence as well as their absence at 25°C and in different media. From these measurements, the rotation correlation time (τB) have been calculated for all the ionic surfactant + PAMAM + water system. A variation in the τBvalue remains mostly constant for the dodecyltrimethyammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) + PAMAM + water ternary mixtures. The τBvalue shows an increase with the increase in the amount of PAMAM for SDS in basic medium and for 12-2-12 in acidic medium. It has been concluded from these results that SDS undergo complexation with all generations of PAMAM in basic medium and 12-2-12 in acidic medium and produce stronger hydrophobic environment. The nuclear magnetic resonance study (NMR) allowed us to evaluate the spin–spin relaxation (T1) times of SDS in the presence of all generations of PAMAM. The T1 values for all the tail protons of SDS showed a slight decrease with the increase in the constant amount of PAMAM suggesting the adsorption of PAMAM molecules on the micelle surface.  相似文献   

19.
The predictions from a recently reported (J. Chem. Phys. 2004, 120, 6648) two-state association model (TSAM) have been tested against experimental data. The temperature, T, and pressure, p, dependence of the isobaric heat capacity, C(p), for three pure alcohols and the temperature dependence at atmospheric pressure of the excess heat capacity, C(p)(E), for four alcohol + ester mixtures have been measured. The branched alcohols were 3-pentanol, 3-methyl-3-pentanol, and 3-ethyl-3-pentanol, and the mixtures were 1-butanol and 3-methyl-3-pentanol mixed with propyl acetate and with butyl formate. These data, together with literature data for alcohol + n-alkane and alcohol + toluene mixtures, have been analyzed using the TSAM. The model, originally formulated for the C(p) of pure liquids, has been extended here to account for the C(p)(E) of mixtures. To evaluate its performance, quantum mechanical ab initio calculations for the H-bond energy, which is one of the model parameters, were performed. The effect of pressure on C(p) for pure liquids was elucidated, and the variety of C(p)(E)(T) behaviors was rationalized. Furthermore, from the C(p) data at various pressures, the behavior of the volume temperature derivative, (deltaV/deltaT)(p), was inferred, with the existence of a (deltaV/deltaT)(p) versus T maximum for pure associated liquids such as the branched alcohols being predicted. It is concluded that the TSAM captures the essential elements determining the behavior of the heat capacity for pure liquids and mixtures, providing insight into the macroscopic manifestation of the association phenomena occurring at the molecular level.  相似文献   

20.
The conductances of hexadecyltrimethylammonium bromide (HTAB) + tetradecyltrimethylammonium bromide (TTAB) mixtures over the entire mole fraction range of HTAB (αHTAB) were measured in pure water as well as in the presence of various aqueous ethylene glycol oligomers containing 5, 10 and 20 wt% of each additive in their respective binary mixtures at 30°C. From the conductivity data, the critical micellar concentration (cmc), degree of counter ion association (χ) and the standard free energy of transfer of the surfactant hydrocarbon chain from the medium to the micelle (ΔGO HP ) for HTAB and TTAB were computed. From the conductivity data of mixed surfactants systems, apart from cmc and χ, the regular solution theory parameters were also computed in order to explore the non-ideality in the mixed micelle formation in the presence of additives. The micellar parameters of both kind of surfactants and their mixtures show a significant dependence on the amount as well as on the number of repeating units of glycol oligomers. However, the non-ideality of mixed micelle formation remains unaffected in the presence of additives. These results have been explained on the basis of the medium effects of aqueous additive and it has been concluded that there are no significant interactions of glycol oligomers with the micelles of single and mixed surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号