首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter investigates the adaptive finite-time synchronization of different coupled chaotic (or hyperchaotic) systems with unknown parameters. The sufficient conditions for achieving the generalized finite-time synchronization of two chaotic systems are derived based on the theory of finite-time stability of dynamical systems. By the adaptive control technique, the control laws and the corresponding parameters update laws are proposed such that the generalized finite-time synchronization of nonidentical chaotic (or hyperchaotic) systems is to be obtained. These results obtained are in good agreement with the existing one in open literature and it is shown that the technique introduced here can be further applied to various finite-time synchronizations between dynamical systems. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed scheme.  相似文献   

2.
This paper deals with the problem of robust finite-time stabilization of non-autonomous chaotic gyrostat systems. It is assumed that the parameters of the gyrostat system are completely unknown in advance and the system is perturbed by unknown uncertainties and disturbances. Some update laws are proposed to estimate the unknown parameters. Based on the finite-time control idea and the update laws, appropriate control laws are designed to ensure the stabilization of the closed-loop system in a finite time. The finite-time stability and convergence of the closed-loop system are analytically proved. A numerical simulation is given to demonstrate the applicability and robustness of the proposed finite-time controller and to verify the theoretical results.  相似文献   

3.
In this paper, the problem of finite-time chaos synchronization between two different uncertain chaotic systems with unknown parameters and input nonlinearities is investigated. It is assumed that both master and slave systems are perturbed by unknown model uncertainties, external disturbances, and fully unknown parameters. Proper update laws are proposed to estimate the systems?? unknown parameters. Based on the update laws and finite-time control technique, a robust adaptive controller is introduced to guarantee the convergence of the slave system trajectories to the trajectories of the master system in a given finite time. Two illustrative examples are presented to illustrate the effectiveness and applicability of the proposed finite-time controller and to validate the theoretical results of the paper.  相似文献   

4.
This paper solves the problem of robust synchronization of nonlinear chaotic gyrostat systems in a given finite time. The parameters of both master and slave chaotic gyrostat systems are assumed to be unknown in advance. In addition, the gyrostat systems are disturbed by unknown model uncertainties and external disturbances. Suitable update laws are proposed to estimate the unknown parameters. Based on the finite-time control idea and update laws, appropriate control laws are designed to ensure the stabilization of the closed-loop system in finite time. The precise value of the convergence time is given. A numerical simulation demonstrates the applicability and efficiency of the proposed finite-time synchronization strategy.  相似文献   

5.
In this paper, we apply the nonsingular terminal sliding mode control technique to realize the novel combination-combination synchronization between combination of two chaotic systems as drive system and combination of two chaotic systems as response system with unknown parameters in a finite time. On the basic of the adaptive laws and finite-time stability theory, an adaptive combination sliding mode controller is proposed to ensure the occurrence of the sliding motion in a given finite time for four different chaotic systems. In theory, it is proved that the sliding mode technique can realize fast convergence for four different chaotic systems in the finite time. Some criteria and corollaries are derived for finite-time combination-combination synchronization of four different chaotic systems. Numerical simulation results are shown to verify the effectiveness and correctness of the combination-combination synchronization.  相似文献   

6.
航天器有限时间饱和姿态跟踪控制   总被引:1,自引:0,他引:1  
针对刚体航天器系统,对存在模型不确定性、外界干扰力矩和控制器饱和等条件下的姿态跟踪控制问题进行了研究。首先,考虑未知模型不确定性和外界干扰,且总干扰上界为未知常数,结合快速非奇异终端滑模、快速终端滑模趋近律以及辅助系统构造了基本的鲁棒有限时间饱和控制器,并通过辅助系统直接补偿了控制器饱和;其次,针对系统总干扰具有多项式上界的情形,进一步结合自适应控制算法,对其上界函数中的未知参数进行在线估计,并设计了自适应有限时间饱和控制器。同时,基于Lyapunov稳定性理论证明了所提出控制算法的有限时间收敛特性。最后,通过数值仿真验证所提出控制算法的控制效果,在两种控制器作用下姿态的跟踪精度分别为5×10-5和1×10-5,证明了所提出控制算法的有效性。  相似文献   

7.
Centrifugal flywheel governors are known as chaotic non-autonomous mechanical devices used for automatic control of the speed of engines. The main characteristic of them is avoiding the damage caused by sudden change of the load torques. In this paper, the problem of robust finite-time synchronization of centrifugal flywheel governor systems is studied. The effects of unknown parameters, model uncertainties, external noises, and input nonlinearities are fully taken into account. We propose some adaptive laws to overcome the side effects of the unknown parameters of the system on the synchronization performance. Then, a robust adaptive switching controller is introduced to synchronize centrifugal flywheel governors with nonlinear control inputs in a given finite time. The finite-time fast convergence property of the proposed scheme is analytically proved and numerically illustrated.  相似文献   

8.
The problem of real combination synchronization between three complex-variable chaotic systems with unknown parameters is investigated by nonsingular terminal sliding mode control in a finite time. Based on the adaptive laws and finite-time stability theory, a nonsingular terminal sliding mode control is designed to ensure the real combination synchronization of three complex-variable chaotic systems in a given finite time. It is theoretically gained that the introduced sliding mode technique has finite-time convergence and stability in both arriving and sliding mode phases. Numerical simulation results are given to show the effectiveness and reliability of the finite-time real combination synchronization.  相似文献   

9.
The electromechanical gyrostat is a fourth-order nonautonomous system that exhibits very rich behavior such as chaos. In recent years, synchronization of nonautonomous chaotic systems has found many useful applications in nonlinear science and engineering fields. On the other hand, it is well known that the finite-time control techniques demonstrate good robustness and disturbance rejection properties. This paper studies the potential application of the finite-time control techniques for synchronization of nonautonomous chaotic electromechanical gyrostat systems in finite time. It is assumed that all the parameters of both drive and response systems are unknown parameters in advance. Moreover, the effects of dead-zone nonlinearities in the control inputs are also taken into account. Some adaptive controllers are introduced to synchronize two gyrostat systems in different scenarios within a given finite-time. Two illustrative examples are presented to demonstrate the efficiency and robustness of the proposed finite-time synchronization strategy.  相似文献   

10.
An adaptive approximation design for the fault compensation (FC) control is addressed for a class of nonlinear systems with unknown multiple time-delayed nonlinear faults. The magnitude and occurrence time of the multiple faults with unknown time-varying delays are unknown. The function approximation technique using neural networks is employed to adaptively approximate the unknown nonlinear effects and changes in model dynamics due to the time-delayed faults. We design an adaptive memoryless FC control system with a prescribed performance bound to compensate the faults and to guarantee the transient performance of the tracking error from unexpected changes of system dynamics. The adaptive laws for neural networks and the bound of residual approximation errors are derived using the Lyapunov stability theorem, which are used for proving that the tracking error is preserved within the prescribed performance bound regardless of unknown multiple time-delayed nonlinear faults. Simulation examples are presented for illustrating the effectiveness of the proposed control methodology  相似文献   

11.
Generalized function matrix projective lag synchronization of uncertain complex dynamical networks with different dimension of nodes via adaptive control method is investigated in this paper. Based on Lyapunov stability theory, adaptive controller is obtained and unknown parameters of both the drive network and the response network are estimated by adaptive laws. In addition, the three-dimension chaotic system and the four-dimension hyperchaotic system, respectively, as the nodes of the drive and response network are analyzed in detail, and numerical simulation results are presented to illustrate the effectiveness of the theoretical results.  相似文献   

12.
This paper introduces an adaptive control scheme for chaos suppression of non-autonomous chaotic rotational machine systems with fully unknown parameters in finite time. To estimate the system unknown parameters, some adaptation laws are proposed. Using the adaptation laws and Lyapunov control theory, an adaptive robust controller is derived to suppress the chaos of non-autonomous centrifugal flywheel governor systems in a given finite time. Some mathematical approaches are presented to prove the finite-time stability and convergence of the proposed method. The exact value of the convergence time is also given. A numerical simulation is provided to illustrate the usefulness and effectiveness of the introduced algorithm and to verify the theoretical results of the paper.  相似文献   

13.
The paper proposes a solution to the problem of observer-based adaptive fuzzy control for MIMO nonlinear dynamical systems (e.g. robotic manipulators). An adaptive fuzzy controller is designed for a class of nonlinear systems, under the constraint that only the system’s output is measured and that the system’s model is unknown. The control algorithm aims at satisfying the $H_\infty $ tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the MIMO system into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system’s parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. Moreover, since only the system’s output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis, it is proven that the proposed observer-based adaptive fuzzy control scheme results in $H_{\infty }$ tracking performance.  相似文献   

14.
In this paper, a robust adaptive intelligent sliding model control (RAISMC) scheme for a class of uncertain chaotic systems with unknown time-delay is proposed. A sliding surface dynamic is appropriately constructed to guarantee the reachability of the specified sliding surface. Within this scheme, neuro-fuzzy network (NFN) is utilized to approximate the unknown continuous function. The robust controller is an adaptive controller used to dispel the unknown uncertainty and approximation errors. The adaptive parameters of the control system are tuned on-line by the derived adaptive laws based on a Lyapunov stability analysis. Using appropriate Lyapunov–Krasovskii (L–K) functional in the Lyapunov function candidate, the uncertainty caused by unknown time delay is compensated and the global asymptotic stability of the error dynamics system in the specified switching surface is accomplished. Finally, the proposed RAISMC system is applied to control a Hopfield neural network, Cellular neural networks, Rössler system, and to achieve synchronization between the Chen system with two time delays with Rössler system without time delay. The results are representative of outperformance of the proposed method in all cases.  相似文献   

15.
This paper studies the robust adaptive full state hybrid projective synchronization (FSHPS) scheme for a class of chaotic complex systems with uncertain parameters and external disturbances. By introducing a compensator and using nonlinear control and adaptive control, the robust adaptive FSHPS scheme is derived, which can eliminate the influence of uncertainties effectively and achieve adaptive FSHPS of the chaotic (hyperchaotic) complex systems asymptotically with a small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions of realizing FSHPS are derived as well. Moreover, we also discuss the case that parameters of chaotic complex system are complex. Finally, the complex Chen system and Lü system, and the hyperchaotic complex Lorenz system are taken as two examples and the numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

16.
This paper is concerned with finite-time chaos control of unified chaotic systems with uncertain parameters. Based on the finite-time stability theory in the cascade-connected system, a nonlinear control law is presented to achieve finite-time chaos control. The controller is simple and easy to be constructed. Simulation results for Lorenz, Lü, and Chen chaotic systems are provided to illustrate the effectiveness of the proposed scheme. Supported by the National Natural Science Foundation of China (Grant No. 60674024).  相似文献   

17.
Permanent magnet synchronous motor (PMSM) exhibits chaotic behavior when its parameters are within a certain range which seriously affect the stable work of PMSM. In order to eliminate the chaos, many approaches have been proposed. Most of them considered asymptotic stability of the system, while finite-time stability makes more sense in practice. In addition, parameters of PMSM may be uncertain because of some external factors, then adaptive control is a good method to be considered. In this paper, adaptive finite-time stabilization problem is considered to eliminate the chaos in PMSM system with uncertain parameters. To show the effectiveness of the proposed method, some simulation results are provided.  相似文献   

18.
Yao  Liqiang  Feng  Likang 《Nonlinear dynamics》2023,111(9):8103-8113

The noise-to-state finite-time practical stability for random nonlinear systems and its application is studied in this paper. The definition of noise-to-state finite-time practical stability is firstly introduced in probability sense for random nonlinear systems. Next, the related stability criterion is also given by Lyapunov approach. For random benchmark system, the finite-time adaptive tracking control problem is investigated by the vectorial backstepping method and the obtained stability theorem. Simulation example illustrates that the constructed controller design scheme is effective and feasible.

  相似文献   

19.
Synchronization of nonlinear dynamical systems with complex variables has attracted much more attention in various fields of science and engineering. In this paper, the problem of parameter identification and adaptive impulsive synchronization for a class of chaotic (hyperchaotic) complex nonlinear systems with uncertain parameters is investigated. Based on the theories of adaptive control and impulsive control, a synchronization scheme is designed to make a class of chaotic and hyperchaotic complex systems asymptotically synchronized, and uncertain parameters are identified simultaneously in the process of synchronization. Particularly, the proposed adaptive–impulsive control laws for synchronization are simple and can be readily applied in practical applications. The synchronization of two identical chaotic complex Chen systems and two identical hyperchaotic complex Lü systems are taken as two examples to verify the feasibility and effectiveness of the proposed controllers and identifiers.  相似文献   

20.
Time delays are ubiquitous in real world and are often sources of complex behaviors of dynamical systems. This paper addresses the problem of parameter identification and synchronization of uncertain hyperchaotic time-delayed systems. Based on the Lyapunov stability theory and the adaptive control theory, a single adaptive controller with one variable for synchronizing two identical time-delay hyperchaotic Lorenz systems with mismatch parameters is proposed. The parameter update laws and sufficient conditions of the scheme are obtained for both linear feedback and adaptive control approaches. Numerical simulations are also given to show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号