首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research on the icephobic properties of fluoropolymer-based materials   总被引:2,自引:0,他引:2  
Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at −8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at −8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to −8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.  相似文献   

2.
潘越  赵强  江舸  周杨  江美福  杨亦赏 《物理学报》2013,62(1):15209-015209
采用射频反应磁控溅射法在316L不锈钢基片上分别沉积了两种薄膜:一种是氟化类金刚石薄膜(F-DLC),另一种是先镀上一定厚度的SiC过渡层再沉积F-DLC.着重研究了薄膜的附着力随过渡层制备条件的变化规律.结果显示,增加SiC过渡层后薄膜的附着力明显增加,且附着力随SiC过渡层的制备条件有所变化,在射频输入功率为200 W,沉积时间5min制备出的SiC过渡层上再沉积F-DLC时,附着力可达8.7 N,远高于未加过渡层时F-DLC膜的附着力(4 N).通过研究SiC的沉积速率曲线、表面形貌和红外光谱,探讨了SiC过渡层及其制备条件影响薄膜附着力的相关机制.  相似文献   

3.
UV imprint lithography has been initiated as an enabling, cost-effective technique to achieve 100 nm resolution patterning in recent years. However, the adhesion between resist and imprint template is one of the critical problems for the industrial application of imprint lithography. In this paper, two kinds of measures, including increase of surface roughness of template and application of a fluorinated release agent as self-assembled monolayers (SAMs) to the template surface, were taken to overcome the adhesion between resist and template. The test results of contact angle showed that the appropriate increase of surface roughness could improve hydrophilicity of template surface greatly, and improved the hydrophobicity of template surface when it was combined with self-assembled monolayers. The XPS, DRIR spectra indicated that the fluorinated release layers were successfully prepared on the surface of template using the process in the paper. The surface free energy of the template was 16.6 mN/m, and less than that of PTFE (18 mN/m). The imprint experiment results also showed that the anti-adhesion performance of treated template was improved greatly during detaching procedure, and the demolding force decreased by 56.64% in comparison with that of untreated template.  相似文献   

4.
H. Krump  M. &#x  imor  I. Hudec  M. Ja&#x  &#x  o  A.S. Luyt 《Applied Surface Science》2005,240(1-4):268-274
In this work, the adhesion strength between poly(ethylene terephthalate) (PET) fibres and styrene-butadiene rubber (SBR) was studied. The effects of atmospheric plasma treatment, used to increase adhesion strength between PET fibres and the rubber matrix, were investigated and compared. It was confirmed that lubricants on the fibres caused a decrease in adhesion strength between the plasma treated reinforcing PET fibres and the SBR rubber matrix. These lubricants can be removed by acetone. When washed and treated in plasma, a substantial improvement in adhesion strength was observed. No ageing in air before combination with the rubber matrix was observed. This confirmed that the plasma streamers caused the creation of a new, relatively stable chemical species on the polymer surface. It suggests that the surface modification of PET fibres by plasma treatment at atmospheric gas pressure is a suitable and technologically applicable method for the improvement of adhesion strength of polyester reinforcing materials to rubber.  相似文献   

5.
从激光超声的特点出发,分析目前主要的超声检测技术,重点研究Fabry-Perot干涉仪的原理和工程应用。共焦Fabry-Perot干涉仪具有只对固体表面的振动速度灵敏、有较大的入射孔径、集光能力强等优点,克服了其它干涉检测技术对工作环境的严格要求,广泛应用于工业生产中。为检测碳钢的疲劳破坏,设计了一个激光超声检测系统,分析不同超声频率和加载不同循环压力造成的疲劳损坏情况。  相似文献   

6.
本文利用自行设计的新型表面覆冰垂直粘结强度测试装置,测试了不同材料表面的覆冰垂直粘结强度,并探讨了基体表面粗糙度、冻冰时间、冰层厚度、冻冰温度等因素对同一材料表面覆冰垂直粘结强度的影响。结果发现,覆冰垂直粘结强度随着材料表面粗糙度增加而增大,随着冰冻温度的升高而降低。而冻冰时间与冰层厚度对覆冰垂直粘结强度的影响较为复杂。  相似文献   

7.
《Composite Interfaces》2013,20(2):113-125
The fiber-matrix adhesion mechanism in high modulus pitch-based carbon fiber-epoxy matrix composites has been studied. The surface morphology and chemistry of the carbon fibers were examined by microscopic (SEM, STM), thermodynamic and spectroscopic (XPS, Raman) techniques. The interlaminar shear strength and transverse tensile strength of the composites made from surface-treated and untreated fibers were also obtained. In the microscopic analysis, there was no difference in the surface roughness between the surface-treated and untreated fibers. In the thermodynamic and spectroscopic analyses, surface treatment of the carbon fibers increased the amount of surface oxygen. The results indicated that the major role of the surface treatment on the carbon fiber-epoxy resin adhesion is not the mechanical interlocking effect by the surface roughness. The formation of surface oxygen-containing functional groups is assumed to account for the increase in fiber-matrix interfacial adhesion.  相似文献   

8.
The industrial use of polypropylene (PP) films is limited because of undesirable properties such as poor adhesion and printability. In the present study, a DC glow discharge plasma has been used to improve the surface properties of PP films and make it useful for technical applications. The change in hydrophilicity of modified PP film surface was investigated by contact angle (CA) and surface energy measurements as a function of exposure time. In addition, plasma-treated PP films have been subjected to an ageing process to determine the durability of the plasma treatment. Changes in morphological and chemical composition of PP films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap shear strength. The results show that the surface hydrophilicity has been improved due to the increase in the roughness and the introduction of oxygen-containing polar groups. The AFM observation on PP film shows that the roughness of the surface increased due to plasma treatment. Analysis of chemical binding states and surface chemical composition by XPS showed an increase in the formation of polar functional groups and the concentration of oxygen content on the plasma-processed PP film surfaces. T-peel and lap shear test for adhesion strength measurement showed that the adhesion strength of the plasma-modified PP films increased compared with untreated films surface.  相似文献   

9.
A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays, the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.  相似文献   

10.
Z. Song 《哲学杂志》2013,93(28):3215-3233
Oscillatory sliding contact between a rigid rough surface and an elastic–plastic half-space is examined in the context of numerical simulations. Stick-slip at asperity contacts is included in the analysis in the form of a modified Mindlin theory. Two friction force components are considered – adhesion (depending on the real area of contact, shear strength and interfacial adhesive strength) and plowing (accounting for the deformation resistance of the plastically deformed half-space). Multi-scale surface roughness is described by fractal geometry, whereas the interfacial adhesive strength is represented by a floating parameter that varies between zero (adhesionless surfaces) and one (perfectly adhered surfaces). The effects of surface roughness, apparent contact pressure, oscillation amplitude, elastic–plastic properties of the half-space and interfacial adhesion on contact deformation are interpreted in the light of numerical results of the energy dissipation, maximum tangential (friction) force and slip index. A non-monotonic trend of the energy dissipation and maximum tangential force is observed with increasing surface roughness, which is explained in terms of the evolution of the elastic and plastic fractions of truncated asperity contact areas. The decrease of energy dissipation with increasing apparent contact pressure is attributed to the increase of the elastic contact area fraction and the decrease of the slip index. For a half-space with fixed yield strength, a lower elastic modulus produces a higher tangential force, whereas a higher elastic modulus yields a higher slip index. These two competing effects lead to a non-monotonic dependence of the energy dissipation on the elastic modulus-to-yield strength ratio of the half-space. The effect of interfacial adhesion on the oscillatory contact behaviour is more pronounced for smoother surfaces because the majority of asperity contacts deform elastically and adhesion is the dominant friction mechanism. For rough surfaces, higher interfacial adhesion yields less energy dissipation because more asperity contacts exhibit partial slip.  相似文献   

11.
Fluorinated compounds are commonly used for anti-stick coating but it is difficult to inspect the coverage of the coating without expensive instruments. Herein, we demonstrated that the 5-(perfluorooctylthio)acetamidofluorescein (5-FOAF) probe can be synthesized in one step and used as a testing reagent to inspect the fluorinated coating on silica- or metal-based surfaces. 5-FOAF is composed of a perfluoroalkyl domain, which has high specific affinity towards fluorinated compounds, and a fluorophore domain, which exhibits fluorescence emission visible by naked eyes. Thus, 5-FOAF will retain on the surface coated with fluorinated compounds but not on the un-coated surface and the emitted fluorescence from the retained tags serves as a semi-quantitative measure of the fluorine coverage across the surface. For this study, silica-based or metal-based surfaces were activated by silane chemistry and then coated with fluorinated compounds. The coating procedure was judiciously optimized to achieve a homogeneous coating. 5-FOAF probe was synthesized in-house and shown to retain on the fluorinated surface 2-5 times stronger than the bare surface. Moreover, by studying the retention on a non-fluoro hydrophobic substrate made of polydimethylsiloxane, the affinity of 5-FOAF with the fluorinated coating was confirmed to be specific and distinguishable from nonspecific hydrophobic interaction. In conclusion, we synthesized a novel chemical, 5-FOAF, and demonstrated its usefulness as a simple testing reagent for fluorinated coatings.  相似文献   

12.
Ice adhesion on super-hydrophobic surfaces   总被引:4,自引:0,他引:4  
In this study, ice adhesion strength on flat hydrophobic and rough super-hydrophobic coatings with similar surface chemistry (based on same fluoropolymer) is compared. Glaze ice, similar to naturally accreted, was prepared on the surfaces by spraying super-cooled water microdroplets at subzero temperature. Ice adhesion was evaluated by spinning the samples at constantly increasing speed until ice delamination occurred. Super-hydrophobic surfaces with different contact angle hysteresis were tested, clearly showing that the latter, along with the contact angle, also influences the ice-solid adhesion strength.  相似文献   

13.
Micro electroforming is an important technology, which is widely used for fabricating micro metal devices in MEMS. The micro metal devices have the problem of poor adhesion strength, which has dramatically influenced the dimensional accuracy of the devices and seriously limited the development of the micro electroforming technology. In order to improve the adhesion strength, ultrasonic agitation method is applied during the micro electroforming process in this paper. To explore the effect of the ultrasonic agitation, micro electroforming experiments were carried out under ultrasonic and ultrasonic-free conditions. The effects of the ultrasonic agitation on the micro electroforming process were investigated by polarization and alternating current (a.c.) impedance methods. The real surface area of the electroforming layer was measured by cyclic voltammetry method. The compressive stress and the crystallite size of the electroforming layer were measured by X-ray Diffraction (XRD) method. The adhesion strength of the electroforming layer was measured by scratch test. The experimental results show that the imposition of the ultrasonic agitation decreases the polarization overpotential and increases the charge transfer process at the electrode–electrolyte interface during the electroforming process. The ultrasonic agitation increases the crystallite size and the real surface area, and reduces the compressive stress. Then the adhesion strength is improved about 47% by the ultrasonic agitation in average. In addition, mechanisms of the ultrasonic agitation improving the adhesion strength are originally explored in this paper. The mechanisms are that the ultrasonic agitation increases the crystallite size, which reduces the compressive stress. The lower the compressive stress is, the larger the adhesion strength is. Furthermore, the ultrasonic agitation increases the real surface area, enhances the mechanical interlocking strength and consequently increases the adhesion strength. This work contributes to fabricating the electroforming layer with large adhesion strength.  相似文献   

14.
The surface texture of a metallic surface plays an important role in its adhesion strength in an adhesion joint. The same applies to medical implants in regard to fixation and tissue integration. To achieve a strong adhesion for a structural joint or a bone tissue fixation for medical implants, the effects of laser drilled micro-holes at the surface of the metals were investigated. The effect of the number of holes per unit area on the adhesion strength of the adhesion joint was evaluated and the results showed that the number of holes per unit area on the adherend surface logarithmically correlated with the bonding strength. Other holes geometries are suggested for enhanced adhesion and bone tissue fixation.  相似文献   

15.
The effects of plasma treatment, used to increase adhesion strength between poly(ethylene terephtalate) (PET) fibres and a rubber matrix, were investigated and compared. Morphological changes as a result of atmospheric plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Wettability analysis using a surface energy evaluation system (SEE system) suggested that the plasma treated fibre was more wetting towards a polar liquid. When treated, these fibres showed a new lamellar crystallization, as shown by a new melting peak using differential scanning calorimetry (DSC). X-ray photoelectron spectroscopy (XPS) has been used to study the chemical effect of inert (argon), active and reactive (nitrogen and oxygen) microwave-plasma treatments of a PET surface. Reactive oxygen plasma treatment by a de-convolution method shows new chemical species that drastically alter the chemical reactivity of the PET surface. These studies have also shown that the surface population of chemical species formed after microwave-plasma treatment is dependent on the plasma gas. All these changes cause better adhesion strength of the PET fibres to the rubber matrix.  相似文献   

16.
Wood/polyethylene (PE) composites are widely used in many fields for its excellent properties, but they are hard to adhere for the surface lacking of polarity. So low-pressure glow discharge of air plasma was used to improve the adhesion properties of wood/PE composites. The composites were treated by plasma under different discharge power. And the changes on the surface properties of the treated and untreated composites were studied by contact angle, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS) analysis. The measurement showed that the contact angle decreased after plasma treatment, and the contact angle decreased gradually with the increasing of discharge power. The FTIR analysis results showed that the polar groups such as hydroxyl, carbonyl and carboxyl were formed on the surface of the composites treated under plasma. SEM and AFM results showed that the roughness of plasma treated samples increased. XPS analysis results indicated that the content of carbon element decreased while the content of oxygen element in the composition of wood/PE composites surface element increased and it reached a balance in a higher power, meanwhile a lot of carboxyl groups were formed. The newly formed polar groups are benefit for the adhesion of composites. The shear bonding strength test showed that the adhesion properties of wood/PE composites improved effectively after plasma treatment.  相似文献   

17.
《Composite Interfaces》2013,20(6):509-527
Two types of composites based on poly(hydroxy ether) and graphite with various amounts of a filler have been investigated by various methods. The methods have been used to estimate the characteristics of adhesion and interfacial layer, including its thickness and tensile strength and interdependence between these values and adhesion. The results are treated on the basis of the theory of irreversible aggregation, cluster theory of the polymer structure and fractal analysis. It is established that all important characteristics of adhesion, interfacial layer and mechanical properties are interconnected with the difference between fractal dimensions of the surface of the aggregates of filler particles and of a polymer matrix, whose structure is distorted under the influence of the filler surface.  相似文献   

18.
Several properties of metallic foams such as their low density, high mechanical strength and good coefficients of heat and mass transfer make them attractive for applications in catalysis. Important modifications in the composition and morphology of the metallic foam surfaces can take place when they are submitted to treatments at high temperatures. These surface changes are due to the migration of some elements from the metallic core to the pore surface, thus inducing a passivation via an oxide layer formation. This new layer avoids further metallic segregation and generates a surface roughness, both effects having a significant impact on the catalytic coating quality. This work analyzes the effects of calcination temperature and time on the chemistry and morphology of the metallic surface corresponding to the AISI 314 stainless steel foams of 50 and 60 ppi. The chemical and morphological surface changes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray (EDX) analysis and Laser Raman Spectroscopy (LRS). The application of high temperature treatments on AISI 314 foams promotes the formation of a surface layer containing chromium oxide and spinel-type compounds of chromium, iron and manganese. The optimum treatment temperature for this type of structures seems to be 900 °C because both the adhesion and thickness of the layer formed are adequate. For the sample with smaller pores (60 ppi) the optimal treatment time is close to 2 h and for that with larger pores (50 ppi) the recommended time is 20 h. Under these conditions, a compromise is found between adhesion, thickness and surface roughness, suitable for the subsequent deposition of catalytic material.  相似文献   

19.
《Composite Interfaces》2013,20(4-6):359-376
The pore characteristics and morphological changes of henequen fiber after electron beam (EB) irradiation were studied, and their effects on interfacial adhesion between henequen fiber and polypropylene (PP) matrix of biocomposites were investigated. The surface morphologies of the fibers exposed to various EB irradiation doses were observed with an atomic force microscope (AFM). The porosity and pore distribution of fibers were characterized by mercury porosimetry and nonfreezing bound water (NFW) was measured by differential scanning calorimeter (DSC). Henequen fiber-reinforced polypropylene biocomposites were manufactured by the compression molding method and interlaminar shear strength (ILSS) was analyzed to examine the interfacial adhesion between henequen fiber and the PP matrix of the biocomposites. The AFM images indicated that pectin, waxy materials and impurities were removed from the surfaces of the henequen fibers during EB irradiation, resulting in changes of the surface morphology and characteristics of the fibers. When pectin, waxy compounds and impurities were removed, small pores of 1–0.01 μm were produced, and total surface area and porosity were increased. The increase in total surface area and porosity induced better adhesion between fiber and polymer which was confirmed by ILSS tests. However, the excessive creation of small pore size gives a negative effect on the tensile strength of henequen fiber. The best interfacial adhesion between henequen fiber and PP was obtained for the biocomposite reinforced with the henequen fiber treated with 10 kGy, which has the highest surface area and optimum pore diameter for interlocking between henequen fiber and polypropylene.  相似文献   

20.
刘亚强  安振连  仓俊  张冶文  郑飞虎 《物理学报》2012,61(15):158201-158201
为抑制环氧树脂绝缘的表面电荷积累、研究处理时间对表面电荷积累的影响, 使用氟/氮混合气在实验室反应釜中对环氧试样进行了不同时间(10 min, 30 min和60 min)的表面氟化处理. 衰减全反射红外分析与SEM断面和表面观察表明随氟化时间的增加, 氟化层的氟化度和厚度增大, 表面微观粗糙度降低、表面组织变得致密. 与开路热刺激放电电流测量所表明的、未氟化(原)试样有深的表面电荷陷阱和稳定的表面电荷相比, 这些氟化试样的表面不能存储电荷. 沉积在它们表面上的电晕电荷于室温下分别约在2 min, 10 min和15 min内快速衰减为零, 展现随氟化时间的延长而减慢的电荷释放速率. 表面电导率和接触角测量及表面能计算表明氟化引起表面电导率和表面润湿性与极性的显著增加, 但它们随氟化时间的延长而减小. 氟化试样表面电导率的显著增大归因于表面电荷陷阱的非常可能的实质变浅和表面吸附的水分. 表面充电电流测量进一步地表明, 与原试样几乎为零的稳态表面电流相比, 这些氟化试样在连续充电期间显现大的稳态表面电流. 这意味着这些氟化试样在充电期间比原试样有少得多的表面电荷积累.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号