首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract

Consistent vapor-liquid equilibria data at 94.00 kPa have been determined for the ternary system ethyl 1,1-dimethylethyl ether + benzene + 2,2,4-trimethylpentane and for its constituent binary benzene + 2,2,4-trimethylpentane, in the temperature range 343 to 370 K. The systems exhibit slight positive deviations from ideal behavior and the system benzene + 2,2,4-trimethylpentane presents an azeotrope. The VLE data have been correlated with the mole fraction using the Redlich-Kister, Wilson, NRTL, UNIQUAC, and Tamir relations. These models, in addition to UNIFAC, allow good prediction of the VLE properties of the ternary system from those of the pertinent binary systems.  相似文献   

2.
《Fluid Phase Equilibria》1996,126(1):71-92
Total vapour pressure measurements made by the modified static method for the ternary system cyclohexanemethanolacetone and all the constituent binary systems at 293.15 and 303.15 K are presented. The alcohol high-dilution region of the cyclohexanemethanol system has been thoroughly studied. Different exprerssions for GE suitable for correlation of these data are tested. The prediction of ternary VLE from the constituent binaries is studied. The accuracy of the prediction of HE from two (P, x) isotherms is studied for the binary systems. The possibility of predicting the ternary HE from VLE isotherms is also. Our results are compared with literature data.  相似文献   

3.
Densities (ρ), viscosities (η) and speeds of sound (u) of the ternary mixture (1-heptanol + tetrachloroethylene + methylcyclohexane) and the corresponding binary mixtures (1-heptanol + tetrachloroethylene), (1-heptanol + methylcyclohexane) and (tetrachloroethylene + methylcyclohexane) at 298.15 K were measured over the whole composition range. The data obtained are used to calculate the excess molar volumes (V E), excess isobaric thermal expansivities (α E), viscosity deviations (Δη), excess Gibbs energies of activation of viscous flow (ΔG *E) and excess isentropic compressibilities (κ S E) of the binary and ternary mixtures. The data from the binary systems were fitted by the Redlich–Kister equation whereas the best correlation method for the ternary system was found using the Nagata equation. Viscosities, speeds of sound and isentropic compressibilities of the binary and ternary mixtures have been correlated by means of several empirical and semi-empirical equations. The best correlation method for viscosities of binary systems is found using the Iulan et al. equation and for the ternary system using the Heric and McAllister equations. The best correlation method for the speeds of sound and isentropic compressibilities of the binary system (1-heptanol + methylcyclohexane) is found using IMR (Van Deal ideal mixing relation) and for the binary system (tetrachloroethylene + methylcyclohexane) it is found using the NR (Nomoto relation) and for the binary system (1-heptanol + tetrachloroethylene) and the ternary system (1-heptanol + trichloroethylene + methylcyclohexane) it is obtained from the FLT (Jacobson free length theory).  相似文献   

4.
Abstract

Consistent vapor-liquid equilibrium data at 94kPa have been determined for the ternary system methyl 1,1-dimethylethyl ether (MTBE) + benzene + toluene. The results indicate that the system deviates positively from ideality and that no azeotrope is present. The ternary activity coefficients of the system have been correlated with the composition using the Redlich-Kister, Wilson, NRTL, UNIQUAC, and UNIFAC, models. It is shown that most of the models allow a very good prediction of the phase equilibrium of the ternary system using the pertinent parameters of the binary systems. In addition, the Wisniak-Tamir relations were used for correlating bubble-point temperatures.  相似文献   

5.
《Fluid Phase Equilibria》1998,153(2):293-315
Vapour–liquid equilibrium (VLE) for the ternary system ethanol (EtOH)+N,N-dimethylformamide (DMF)+cyclohexane (Cy) and for the relevant binary mixtures containing DMF have been determined at 298.15 K by headspace gas chromatographic analysis of the vapour phase directly withdrawn from an equilibrium apparatus. Measurements of liquid–liquid equilibria in both binary DMF+Cy and ternary mixtures have been also carried out. The binary VLE data have been described with different correlation equations. The capabilities of different models of either predicting or reproducing the ternary data have been compared. Excess Gibbs energies GE as well as activity coefficients γi of components have been obtained and briefly discussed. While EtOH+DMF behaves almost ideally with slightly negative GE-values, both EtOH+Cy and DMF+Cy exhibit large positive deviations. The GEs of the ternary system are positive with the exception of a narrow region in dilute Cy. The excess entropy and the temperature dependence of GE and γi have been calculated in the whole ternary domain from the known excess enthalpy and heat capacity. The predictions by different equations of the effect of temperature on the mutual solubilities of DMF and Cy as well as on the binodal curve of EtOH+DMF+Cy have been compared with experiment.  相似文献   

6.
Total vapour pressure measurements made by the modified static method for the ternary systems methanol-chloroform-acetone and constituent binaries at 313.15 and 323.15 K are presented. The different expressions of GE suitable for correlation of these data are tested. A prediction of ternary VLE from binary data is examined. The possibility of predicting the binary and ternary VLE at one temperature using VLE data at another temperature and HE data is investigated. Accuracy of prediction of HE from two (P, x) isotherms is also studied. Our results are compared with literature data.  相似文献   

7.
Experimental tie-line data were determined for one ternary system, water + diisopropyl ether + n-heptane and two quaternary systems, water + diisopropyl ether + 2-propanol + n-heptane or toluene at 298.15 K and ambient pressure. The experimental liquid–liquid equilibrium data were successfully correlated using a modified UNIQUAC model with ternary and quaternary mixture parameters, in addition to the binary ones. The calculated results were also compared with those obtained from an extended UNIQUAC model of Nagata [Fluid Phase Equilib. 54, 191 (1990)].  相似文献   

8.
Abstract

The terpolymerization of butadiene, acrylonitrile, and methacrylic acid in emulsion, using potassium persulfate as initiator and sodium dioctylsulphosuccinate as emulsifier, was investigated. For the binary system butadiene (M1) and methacrylic acid (M2), the following monomer reactivity ratios were determined: r12 = 0.18 ± 0.05 and r21 = 0.52 ± 0.09. When polymerizations were stopped at low conversions they gave terpolymers which show good agreement between experimental and theoretical copolymerization composition data, calculated from the Alfrey-Goldfinger equation. The relationships between monomer feed and terpolymer compositions are presented on triangular coordinate graphs as proposed by Slocombe. By using a computer program, the lines of unique composition and the lines of binary azeotropic composition were established. No point of true azeotropic composition was found, but a “pseudo-azeotropic” region was recognized. The influence of composition on glass transition temperature and thermal characteristics of the terpolymers is described.  相似文献   

9.
The UNIFAC Group Contribution method is applied to predict ternary excess enthalpies H E . In order to improve previous predictions, values for the group interaction parameters are determined from binary excess enthalpy data. These parameters are used to estimate sixty-four sets of ternary H E data which are compared with data from the literature. Results are also compared with those obtained using methods to predict ternary excess enthalpies from the binary H E data for the three binary system involved.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.  相似文献   

10.
The density, viscosity, refractive index, heat conductivity, heat capacity, and freezing temperature of the LiCl-CeCl3-H2O ternary system were experimentally determined over the lithium and cerium chloride concentration ranges 13–20 and 8–14 wt %, respectively, and the temperature range ?50–35°C. The densities and viscosities of the LiCl-CeCl3-H2O ternary system were calculated by various methods from the properties of binary solutions. The calculation results were compared with the experimental data. The possibilities and shortcomings of each of the methods used are discussed.  相似文献   

11.
《Fluid Phase Equilibria》2004,217(2):157-164
Experimental isothermal Px data at T=313.15 K for the binary systems 1,1-dimethylethyl methyl ether (MTBE)+n-hexane and methanol+n-hexane, and the ternary system MTBE+methanol+n-hexane are reported. Data reduction by Barker’s method provides correlations for GE using the Margules equation for the binary systems and the Wohl expansion for the ternary system. Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems. Moreover, we compare the experimental results for these binary mixtures to the prediction of the UNIFAC (Dortmund) model. Experimental results have been compared to predictions for the ternary system obtained from the Wilson, NRTL, UNIQUAC and UNIFAC models; for the ternary system, the UNIFAC predictions seem poor. The presence of azeotropes in the binary systems has been studied.  相似文献   

12.
The terpolymerization of acryionitrile, styrene, and pentabromophenyl acrylate in dimethylformamide solution was investigated. Experimental terpolymerization data agreed well with calculations using the Alfrey-Goldfinger equation. The relationship between monomer feed and terpolymer compositions are presented on triangular coordinate graphs, and the lines of unique and the lines of binary azeotropic composition were identified. No point of true ternary azeotropic composition was found but a “pseudoazeotropic” region was identified. The experimental results of the terpolymerization agreed well with the theoretical curves over a wide range of monomer composition up to high conversions. The influence of pentabromophenyl acrylate units on the thermal and flammability characteristics of the terpolymers are described.  相似文献   

13.
A method for predicting isobaric binary and ternary vapor—liquid equilibrium data using only isothermal binary heat of mixing data and pure component vapor pressure data is presented. Three binary and two ternary hydrocarbon liquid mixtures were studied. The method consists of evaluating the parameters of the NRTL equation from isothermal heat of mixing data for the constituent binary pairs. These parameters are then used in the multicomponent NRTL equation to compute isobaric vapor—liquid equilibrium data for the ternary mixture. No ternary or higher order interaction terms are needed in the ternary calculations because of the nature of the NRTL equation. NRTL parameters derived from heat of mixing data at one temperature can be used to predict vapor—liquid equilibrium data at other temperatures up to the boiling temperature of the liquid mixture.For the systems studied this method predicted the composition of the vapor phase with a standard deviation ranging from 1–8% for the binary systems and from 4–12% for the ternary systems.  相似文献   

14.
Abstract

Excess molar volumes at 298.15 K of the ternary mixtures (propyl ethanoate + n-heptane + n-decane), (propyl propanoate + n-heptane + n-decane) and (propyl butanoate + n-heptane + n-decane) were determined using a DMA 60/602 Anton Paar densimeter. All the experimental values were compared with the results obtained with empirical expressions for estimating ternary properties from binary data and with the Nitta-Chao group-contribution model. For these ternary mixtures the same behaviour that had been observed in ester + n-alkane binary systems was found: excess volumes decrease when the ester length increases.  相似文献   

15.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system tert-amyl methyl ether + ethanol and tert-amyl methyl ether + 2,2,4-trimethylpentane and for ternary system tert-amyl methyl ether + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental vapor–liquid equilibrium data were correlated with GE models (Margules, van Laar, Wilson, NRTL, UNIQUAC) equations. The excess volume and deviations in molar refractivity data are also reported for the same binary and ternary systems at 298.15 K. These data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The experimental ternary excess volume and deviations in molar refractivity data, were also compared with the estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

16.
ABSTRACT

Rapidly increasing demands for higher integration density and stability of electronic devices embrace higher requirements for thermally conductive silicone rubber, which is promisingly used in ultra-thin components. In this work, alumina whiskers (AWs) and alumina flakes (AFs) are used to modify liquid silicone rubber (LSR) by fabricating binary (AFs/LSR) or ternary (AWs/AFs/LSR) composites. The thermal conductivity and mechanical strength of the binary and ternary composites were investigated. Thermal conductivity of the binary AFs/LSR composite (25AFs/LSR) was 0.1990 W m?1 K?1, while the thermal conductivity of the ternary AFs/AWs/LSR composite (20AFs/5AWs/LSR) was 0.2655 W m?1 K?1. Furthermore, the tensile strength of the ternary AWs/AFs/LSR composites increased by 180.9% as compared with the binary system, increased to 7.81 MPa from 2.78 MPa due to the introduction of 1 wt% AWs. As a reason, a significant synergistic effect of AWs and AFs in the enhancement of both thermal and mechanical properties of the LSR was proved. Furthermore, the dielectric property measurements demonstrated that the ternary composites exhibited a lower dielectric constant and dielectric loss, indicating that the AWs/AFs/LSR composites were qualified to be applied in the field of electronic devices.  相似文献   

17.
《Fluid Phase Equilibria》1999,165(2):197-208
Experimental isothermal Px data at 313.15 K for the ternary system (tert-amylmethyl ether (TAME)+n-heptane+methanol) and for one of the unmeasured constituent binary systems, (tert-amylmethyl ether (TAME)+methanol) are reported. Data reduction by Barker's method provides correlations for gE using the Margules equation for the binary systems and the Wohl expansion for the ternary system. Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems. The presence of azeotropes in the ternary system and constituent binaries are studied as well as the presence of immiscible zones.  相似文献   

18.
Isothermal vapor–liquid equilibrium data at 333.15 K are measured for the binary system ethanol + 2,2,4-trimethylpentane and for ternary system di-methyl carbonate (DMC) + ethanol + 2,2,4-trimethylpentane by using headspace gas chromatography. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different activity coefficient models. Excess volume and deviations in molar refractivity data are also reported for the binary systems DMC + ethanol and DMC + 2,2,4-trimethylpentane and the ternary system DMC + ethanol + 2,2,4-trimethylpentane at 298.15 K. These data were correlated with the Redlich-Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. The ternary excess volume and deviations in molar refractivity data were also compared with estimated values from the binary contribution models of Tsao–Smith, Kohler, Rastogi and Radojkovi?.  相似文献   

19.
Densities (ρ), speeds of sound (u) and refractive indices (nD ), of the ternary mixture (diethylcarbonate + p-chloroacetophenone + 1-hexanol) and the involved binary mixtures (diethylcarbonate + p-chloroacetophenone, diethylcarbonate + 1-hexanol, and p-chloroacetophenone + 1-hexanol) have been measured over the whole composition range at 303.15 K for the liquid region and at ambient pressure. The data obtained are used to calculate isentropic compressibilities ks , isentropic compressibility deviations Δks and refractive index deviations ΔnD , of the binary and ternary mixtures. The data of isentropic compressibility deviations and refractive index deviations of the binary systems were fitted to the Redlich–Kister equation while the best correlation method for the ternary system was found using the Cibulka equation. The experimental data of the constitute binaries and ternaries are analysed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

20.
The terpolymerization of acrylonitrile with styrene and 2,3-dibromopropyl acrylate in emulsion and dimethyl formamide solution was investigated. Polymerizations, when stopped at low conversions, yielded terpolymers that showed good agreement between experimental and theoretical copolymerization composition data, calculated from the Alfrey-Goldfinger equation. The relationship between monomer feed and terpolymer compositions is displayed on triangular coordinate graphs proposed by Slocombe. By using a computer program the lines of unique composition and binary azeotropic composition for both systems were established. In the case of emulsion polymerization the azeotropic ternary point was determined at a molar ratio for acrylonitrile/styrene/2,3-dibromopropyl acrylate of 0.27/0.61/0.12. The experimental results of emulsion terpolymerization fit the calculated curves satisfactorily over a wide range of monomer compositions up to high conversions. The influence of 2,3-dibromopropyl acrylate on the thermal and flammability characteristics of the terpolymers is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号