首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
The influences of thermal treatment on cold crystallization and the thermal behavior of poly‐L‐lactide (PLLA) were investigated by DSC and polarizing microscopy. Both the cooling and heating rates had effects on cold crystallization. Double peaks were observed for the samples on subsequently heating at 10°C min?1 after cooling between 5 and 20°C min?1. The degrees of crystallinity dramatically increased with decreasing cooling rate, and the size of PLLA spherulites increased with a decrease in the cooling rate. Double cold crystallization peaks were also observed during heating traces at higher rates for this material after fast cooling (20°C min?1) from the melt. The competition between the crystallization from the nuclei formed during cooling, and that from spontaneous nucleation might be responsible for the appearance of double peaks.  相似文献   

2.
In this work, an unusual morphology of a mixture of polyamide‐12 (PA‐12) with a series of poly (styrene‐co‐acrylonitrile) (SAN) was obtained by solution casting and fast solvent evaporation. The prepared film was transparent although it contained many crystals. These crystals apparently prevented phase separation despite the instability of the PA‐12 and SAN mixtures below 180°C. In isothermal experiments, once the crystals were melted, phase separation began and the scattered intensity fit the Cahn–Hilliard theory. When the AN content in the SAN copolymer was less than 5%, the phase separation took place when only part of the crystals were melted at 180°C. However, due to the constraint of unmelted crystals, the growth rate of phase separation at this temperature was much slower.  相似文献   

3.
Silica graft poly(propylene) (silica‐g‐PP) nanocomposites were successfully prepared by radical grafting copolymerization and ring‐opening reaction. Their thermal properties were studied by step‐scan differential scanning calorimetry (SDSC) and thermogravimetric analysis (TGA). The exothermic peaks in the IsoK baseline (Cp,IsoK, nonreversing signal) of SDSC reveal that PP and silica‐g‐PP nanocomposites undergo melting‐recrystallization‐remelting during heating. The peak temperatures of recrystallization and remelting shift upward with the existence of nanoparticles in the PP matrix. The thermal degradation kinetics of silica‐g‐PP nanocomposites were investigated using nonisothermal TGA and the Flynn‐Wall‐Ozawa method. The results indicate that the thermal stability was significantly improved with increasing silica content, mainly because of the physical‐chemical adsorption of the volatile degradation products on the nanoparticles that delays their volatilization during decomposition, and the covalent interaction between nanoparticles and PP chains, which will also reduce the breakage of PP backbone chains.  相似文献   

4.
Abstract

The kinetics of the thermally activated cross‐linking reaction of poly(vinyl methyl ether) (PVME) were investigated rheologically by evaluating the viscoelastic material functions such as elastic storage modulus, G′, viscous loss modulus, G″ and complex dynamic viscosity, η*, during the curing process, both isothermally and nonisothermally. The isothermal kinetics reaction was described using a phenomenological equation based on the Malkin and Kulichikhin model, which was predicated originally for the isothermal curing kinetics of thermosetting polymers followed by differential scanning calorimetery (DSC) and was found to be applicable for rheokinetic reactions as well. An excellent representation of the data was obtained using this model; the rate of the reaction was found to be second order regardless of the temperature, which is in good agreement with literature data. The temperature dependence of the cross‐linking rate constant was described by an Arrhenius plot with an apparent activation energy equal to 60–62 kJ mol?1, in reasonable agreement with the value obtained previously from the temperature dependence of gel time, t gel. The nonisothermal kinetics reaction rate was described by a model that included the classical rate equation, the Arrhenius equation, and the time–temperature relationships. The apparent activation energy obtained nonisothermally was found to be frequency independent and equal to 72 kJ mol?1, in very good agreement with the value obtained isothermally from the temperature dependence of t gel in part II.  相似文献   

5.
Blends of ethylene–methyl acrylate–glycidyl methacrylate terpolymer (E‐MA‐GMA, a random terpolymer) and polycarbonate (PC) were prepared in a Haake torque rheometer and the rheological properties, phase morphology, and thermal behavior were investigated. The graft reactions of PC terminal hydroxyl groups with the epoxy groups of E‐MA‐GMA and the in situ formation of the E‐MA‐GMA‐g‐PC copolymers at the interface were illustrated by the improved mixing torque and melt viscosity in E‐MA‐GMA/PC blends. Typical variation and significant deformation of the dispersed phase was observed in E‐MA‐GMA/PC blends with different composition, where PC was the matrix. With the E‐MA‐GMA content increasing, a complex co‐continuous phase structure with some dispersed E‐MA‐GMA particles wrapped in the continuous PC phase was present, indicating strengthened interfacial adhesion. When the E‐MA‐GMA content was higher than the PC component, fibrous structure of the dispersed PC phase in the E‐MA‐GMA matrix was caused by shear flow and interfacial interaction. DSC studies showed that the melting point of E‐MA‐GMA shifted to lower temperature with the increase of PC content, indicating that the enhanced interaction and graft structure hindered the process of crystallization and crystal growth.  相似文献   

6.
By using open-ended armchair (6, 6) single-wall carbon nanotubes as electrodes, we investigate the electron transport properties of an all-carbon molecular junction based on the C82 molecule. We find the most stable system among different isomers by performing structural optimization calculations of the Cs2 isomers and the C82 extended molecules. The calculated results show that the C82 -C2 (3) isomer and the C82 extended molecule with C82-C2 isomer are most stable. For the all-carbon hybrid system consisting of C82-C2 extended molecules, it is shown that the Landauer conductance can be tuned over several orders of magnitude both by changing the distance between two electrodes and by changing the orientation of the C82 molecule or rotating one of the tubes around the symmetry axis of the system at a fixed distance. Also, we find the most stable distance between two electrodes from the total energy curve. This fact could make this all-carbon molecular system a possible candidate for a nanoelectronic switch. Moreover, we interpret the conductance mechanism for such a molecular device.  相似文献   

7.
《光谱学快报》2013,46(5-6):537-550
The vibrational frequencies of N‐acetyl‐L‐alanine (NAAL), its potassium salt (NAALK) and its free anionic form (NAAL?) are calculated using density functional theory (B3LYP) combined with the 6‐311 + + G(d,p) basis set. The experimental Raman spectrum of solid NAALK and the scaling factors for calculated values are discussed as well. The three species are characterized by intramolecular NH…O hydrogen bonds leading to the formation of a five‐membered ring. As indicated by the intramolecular (N)H…O distances and by the ν(NH) frequencies, the strength of the intramolecular hydrogen bond is ordered as follows: NAAL? < NAALK < NAAL?. Owing to their difference in the coupling with other vibrational modes, the in‐plane and out‐of‐plane vibrations do not reflect the strength of the hydrogen bond.  相似文献   

8.
Abstract

Thermal cross‐linking of poly(vinyl methyl ether) (PVME) in the absence of cross‐linking agent, was detected rheologically. The linear viscoelastic properties of PVME were found to be greatly changed by the onset of the cross‐linking process. The viscoelastic material functions, such as dynamic shear moduli, G′ and G″, complex shear viscosity, η*, and loss tangent, tan δ, were found to be sensitive to the structure changes during the cross‐linking process and the formation of a three‐dimensional polymer network. At the onset temperature of the cross‐linking process, an abrupt increase in G′, G″, and η* (several orders of magnitude) during dynamic temperature ramps (2°C/min heating rate) was observed with some frequency dependence. The temperature dependence of tan δ was found to be frequency independent at the gel‐point, T gel, that is, the crossover in tan δ regardless of the value of frequency can be taken as an accurate method for determination of T gel. The coincidence of G′ and G″ at the gel‐point cannot be considered a general method for evaluation of T gel due to its high frequency dependence, that is, T gel determined from the crossover of G′ and G″ in the dynamic temperature ramp at 1 rad/sec is about 20°C less than at 100 rad/sec. Furthermore, a dramatic increase in η0 above the minimum (“v” shape) was observed at T = T gel in agreement with the value obtained from tan δ vs. T (190°C). The time–temperature‐superposition principle was found to be valid only for temperatures lower than the T gel (190°C); the principle failed at T ≥ 190°C. This was clearly seen in the low‐frequency region as a deviation from the terminal slope in the G′ curve. Similar behavior was observed in the modified Cole–Cole analyses (G″ vs. G′) that is, the curves start to deviate at 190°C.  相似文献   

9.
Spectral manifestations of protolytic forms of 1aza2methyl6aminopyrene in ethanol and aqueous solutions are investigated. The ionization constants of the protolytic forms are determined. The generation properties and photostability of a neutral molecule and a cation in excitation by an excimer XeCl laser are studied.  相似文献   

10.
Abstract

The introduction of 2,9,16,23‐tetramide‐Fe(III)phthalocyanine [Fe(III)taPc] units into phosphorylated poly(N‐vinylcarbazole) yields an amorphous grafted polymer containing free carbazolyl groups, phosphonic acid attached to carbazolyl groups, and grafted Fe(III)taPc units as evidenced by infrared spectroscopy. Several thermal transitions were detected by differential scanning calorimetry (DSC). The thermodegradation of the grafted sample, analyzed by simultaneous thermogravimetry‐differential thermal analysis (TG‐DTA), showed successive endo‐ and exothermal reactions resulting from the development of a cross‐linked structure. To determine kinetic parameters, both isothermal and dynamic experiments were performed at the different steps of the degradation process and theoretical methods were applied.  相似文献   

11.
Using the methods of atomicforce microscopy, xray diffractometry, and spectrophotometry, we have studied the morphological, structural, and optical characteristics of GRSactive substrates based on original and annealed silver films. We show that the backing temperature during deposition is the factor which exerts the most substantial effect on the morphological and optical properties of silver films and also on their stability with time. The coefficients of the correlation of the deposition rate with the characteristics of the optical density spectra of silver films are calculated. It is found that hightemperature (350°C) annealing of a silver film leads to the selforganization of its surface into a quasiperiodic structure with semiellipsoidal islets. The contribution of the processes of excitation of plasma resonances to the formation of the optical density spectra is discussed. It is shown that as a result of thermal modification the concentration of the crystalline phase of silver in a silver film increases 2–3 times and also the dispersion of the orientation of crystallites decreases.  相似文献   

12.
《光谱学快报》2013,46(5):493-516
Abstract

The Diels–Alder adducts, 3ae, of phencyclone, 1, have been prepared from a series of Nn‐alkylmaleimides, 2, with medium chain‐length n‐alkyl groups. The maleimides were obtained by cyclodehydration of the Nn‐alkylmaleamic acids, 4, formed from reaction of maleic anhydride with the corresponding n‐alkylamines. The five adducts prepared included derivatives from n‐heptyl, 3a; n‐octyl, 3b; n‐nonyl, 3c; n‐decyl, 3d; and n‐dodecyl, 3e. The NMR spectra of the adducts were studied in CDCl3 at ambient temperatures at 300 MHz for proton and 75 MHz for carbon‐13, with full proton assignments achieved by high‐resolution COSY45 spectra for the aryl and the alkyl regions. Slow exchange limit (SEL) spectra were observed for both 1H and 13C spectra showing slow rotation on the NMR timescales of the unsubstituted bridgehead phenyl groups. Endo Diels–Alder adduct stereochemistry was supported by striking magnetic anisotropic shielding effects in the 1H spectra of the alkyl groups, with the NCH2 CH 2 signal of each adduct appearing upfield of tetramethylsilane (TMS) at ca. ?0.32 ppm. Proton NMR spectra for precursor maleamic acids and maleimides are reported, with some solvent effects found (CDCl3 vs. d 6‐acetone) for the carbon‐bound HC?CH protons of 4. Ab initio molecular modeling calculations at the Hartree‐Fock level using the 6‐31G* basis set have been performed for two key conformers of the phencyclone adduct of Nn‐octylmaleimide, as a representative structure for these hindered adducts, to estimate geometric parameters for the adduct. A syn conformer, with the alkyl chain directed into the adduct cavity, was found to be ca. 0.23 kcal/mol lower energy than an anti conformer (in which the alkyl chain was directed away from the phenanthrenoid moiety).  相似文献   

13.
Abstract

Isothermal time evolution measurements at different constant temperatures (170°C, 180°C, and 190°C) over a wide range of frequency for the thermal cross‐linking process of poly(vinyl methyl ether), PVME, have been investigated rheologically. At the onset of cross‐linking (t onset) the elastic storage modulus, G′, increases abruptly. The magnitude of the elevation in G′ and the value of t onset were found to be temperature‐dependent. Similar behavior was observed for both the viscous loss modulus, G″ and the complex dynamic viscosity, η*; however, the value of G″ shows a very low sensitivity to the cross‐linking process compared to G′ and η* at the same experimental conditions. The gel point, t gel, was evaluated from the point of intersection in plots of tan δ vs. curing time for different constant shear frequencies. At the gel point tan δ is no longer frequency‐dependent, and all curves cross‐over, indicating the validity of the Winter–Chambon criterion. The value of t gel obtained from the coincidence of G′ and G″ was about 10 min longer than that determined from tan δ vs. t, indicating that the crossover of G′ and G″ is not be considered as a general method for evaluation of t gel. The value of the apparent activation energy of gelation determined from the temperature dependence of t gel was 74 kJ mol?1 in good agreement with literature values for other different systems. At the gel point G′ and G″ showed a power law with shear frequency, i.e., G′ ~ G″ ~ ω n with critical exponents equal to 0.64 and 0.75, respectively, in close agreement with the percolation theory (n = 2/3). The zero shear viscosity, η0, and the equilibrium shear modulus, G eq, can also be expressed in power low scaling functions with the relative distance from the gel point, ? i.e., η0 ~ ??k and G eq ~ ? z with k = 1.3 and z = 2.4 in good agreement with the predicted values based on the percolation theory.  相似文献   

14.
ITER blanket design has progressed significantly since 2001, which resulted in a reduction in cost and an increase in performance with respect to FDR 2001. One of the most important improvements is the new coolant flow configuration in the shield block ( SB ) . In the current design TM, the cooling circuit in the SB is a matrix of radial holes which are arranged in eight poloidal rows. The rows are fed in parallel by front headers and back drilled collectors, and merge in four couples through the front header. These four couples of rows are linked in series by transverse holes. In the current design, a special shape of flow driver is mounted inside the radial hole, and coolant flows through clearance between the driver and drilled radial hole, which allows achieving a high coolant velocity,  相似文献   

15.
16.
Geometric and electronic properties of highly fluorinated fullerene C74F38 have been studied using the density functional theory at BLYP level with the double numerical atomic orbital basis sets with polarization functions (DNP). The optimized geometry of C74F38, quite different from that of C74, turns into a pronounced hexahedron shape because the six stabilizing isolated benzenoid rings tend to be as far apart as possible. The HOMO-LUMO energy gap and the binding energy of C74F38 indicate that C74F38 is not only kinetically but also dynamically stable. The shorter F-C bond lengths together with the analysis of the density of states and the Mulliken populations indicate that the F-C bonds in C74F38 have both covalent and ionic characters. The Mulliken populations show that the fluorine atoms obtain about 10 electrons from the C74 cage.  相似文献   

17.
It is essential to obtain thermophysical properties of methane hydrate precisely with a freestanding probe for modeling and predicting thermal transport in gas hydrates. A method with a freestanding 3ω probe is presented to reconstruct the intrinsic thermal conductivity, thermal diffusivity, and thermal contact resistance of methane hydrate. Isolated from the thermal contact resistance, the intrinsic thermal conductivity of methane hydrate decreases between 250 K and 280 K and is 41% larger than the effective value at 253 K. More importantly, when the thermal contact resistance is isolated, the temperature dependence of intrinsic thermal conductivity shows a converse trend with the generally accepted glass-like feature at high temperature. Otherwise, thermal contact resistances measured in the experiment between the freestanding 3ω probe and the methane hydrate sample are extraordinary large. The freestanding 3ω method in this work is expected to measure the thermal property of methane hydrate more accurately.  相似文献   

18.
Thermally stimulated depolarization current (TSDC) and thermal analysis studies of gamma irradiated LiOH/PVA blends were done. To study the mechanisms of conduction and TSDC in poly(vinyl alcohol) (PVA) and LiOH/PVA blends, short circuit TSDC at a polarizing temperature 353 K with a polarizing field of 3 kV cm?1 have been analyzed in the temperature range 300–410 K. Two peaks are evident from the global TSDC measurements on the pure PVA homopolymer. Meanwhile, in all blended samples; there is only one broad peak with a shoulder on the high temperature side due to the relaxation of the poly‐blend system. The temperature dependence, 300–408 K, of the current density (J) for pure PVA and its blended samples has been studied. It was observed that J values increase dramatically with increasing temperature (in the low temperature region from 300–340 K) owing to the formation of local ordered regions in the otherwise disordered amorphous matrix of PVA. Further increase in the temperature caused a marginal increase in J values. The temperature dependence of the specific heat for all samples was measured. A linear increase of C p was observed with an increase in temperature, which is ascribed to the increase in lattice vibration of linear macromolecules and consequently, increases in the number of internal degree of freedom of phonons.  相似文献   

19.
Equations of motion for polarization on the SP atomic transition in a weak resonance field have been derived taking into account the Van der Waals interaction between atoms. The case of two atoms is considered within the Wigner–Weisskopf formalism and generalized to the case of identical atoms in a weak resonance field, where the saturation is negligible. It is found that two equations of motion are necessary: one of them for the polarization and another one for an effective polarization relaxation rate.  相似文献   

20.
The thermal oxidation of polylactide–low-density polyethylene mixtures with additives of oxidized polyethylene as an analogue of recyclable materials is studied. It is found that the polylactide is oxidized more slowly than polyethylene, whereas the introduction of up to 30 wt % of oxidized polyethylene accelerates the thermal oxidation of the mixtures, with the physical and mechanical properties of the resultant materials remaining suitable for practical use. It is established that the presence of oxidized polyethylene has virtually no effect on the melting point of polylactide and polyethylene, somewhat increasing, however, the degree of crystallinity of the components of the blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号