首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prior computations predict that fluid spheres illuminated by an acoustic Bessel beam can be subjected to a radiation force directed opposite the direction of beam propagation. The prediction of negative acoustic radiation force is extended to the cases of a solid poly(methylmethacrylate) PMMA sphere in water and an empty aluminum spherical shell in water. Compared with the angular scattering patterns for plane wave illumination, the scattering into the back hemisphere is suppressed when the radiation force is negative. This investigation may be helpful in the development of acoustic tweezers and in the development of methods for manipulating objects during space flight.  相似文献   

2.
F.G. Mitri 《Annals of Physics》2008,323(7):1604-1620
Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle β of its plane wave components, such that β = 0 represents a plane wave. It is assumed here that the half-cone angle β for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments.  相似文献   

3.
Prior computations have predicted the time-averaged acoustic radiation force on fluid spheres in water when illuminated by an acoustic high-order Bessel beam (HOBB) of quasi-standing waves. These computations are extended to the case of a rigid sphere in water which perfectly mimics a fluid sphere in air. Numerical results for the radiation force function of a HOBB quasi-standing wave tweezers are obtained for beams of zero, first and second order, and discussed with particular emphasis on the amplitude ratio describing the transition from progressive waves to quasi-standing waves behavior. This investigation may be helpful in the development of acoustic tweezers and methods for manipulating objects in reduced gravity environments and space related applications.  相似文献   

4.
王明升  李威 《声学学报》2020,45(1):87-93
通过声散射理论,将水中粒子的Bessel波束声散射场的分波序列(PWS)表达公式加以推广,进而推导出声辐射力的表达公式,获得了液体球及弹性球在Bessel波束下声辐射力的变化规律。通过观察不同散射角形态函数,可发现声辐射力的产生与粒子背向散射抑制程度有关。对于液体球粒子,球壳厚度及材料介质对粒子声辐射力有着重要的影响,同时Bessel波束波锥角越大,产生负声辐射力的可能性越大。对于弹性球和弹性单层壳粒子,声辐射力的产生与其本身的共振特征存在很大的关系。同时,通过改变球壳内介质及壳层厚度的方法,可增加产生的负声辐射力的频率范围及幅值强度.   相似文献   

5.
The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves’ amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.  相似文献   

6.
Scattering of a Bessel beam by a sphere   总被引:1,自引:0,他引:1  
The exact scattering by a sphere centered on a Bessel beam is expressed as a partial wave series involving the scattering angle relative to the beam axis and the conical angle of the wave vector components of the Bessel beam. The sphere is assumed to have isotropic material properties so that the nth partial wave amplitude for plane wave scattering is proportional to a known partial-wave coefficient. The scattered partial waves in the Bessel beam case are also proportional to the same partial-wave coefficient but now the weighting factor depends on the properties of the Bessel beam. When the wavenumber-radius product ka is large, for rigid or soft spheres the scattering is peaked in the backward and forward directions along the beam axis as well as in the direction of the conical angle. These properties are geometrically explained and some symmetry properties are noted. The formulation is also suitable for elastic and fluid spheres. A partial wave expansion of the Bessel beam is noted.  相似文献   

7.
F.G. Mitri 《Ultrasonics》2009,49(8):794-798

Background and objective

Particle manipulation using the acoustic radiation force of Bessel beams is an active field of research. In a previous investigation, [F.G. Mitri, Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers, Annals of Physics 323 (2008) 1604–1620] an expression for the radiation force of a zero-order Bessel beam standing wave experienced by a sphere was derived. The present work extends the analysis of the radiation force to the case of a high-order Bessel beam (HOBB) of positive order m having an angular dependence on the phase ?.

Method

The derivation for the general expression of the force is based on the formulation for the total acoustic scattering field of a HOBB by a sphere [F.G. Mitri, Acoustic scattering of a high-order Bessel beam by an elastic sphere, Annals of Physics 323 (2008) 2840–2850; F.G. Mitri, Equivalence of expressions for the acoustic scattering of a progressive high order Bessel beam by an elastic sphere, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56 (2009) 1100–1103] to derive the general expression for the radiation force function YJm,st(ka,β,m), which is the radiation force per unit characteristic energy density and unit cross-sectional surface. The radiation force function is expressed as a generalized partial wave series involving the half-cone angle β of the wave-number components and the order m of the HOBB.

Results

Numerical results for the radiation force function of a first and a second-order Bessel beam standing wave incident upon a rigid sphere immersed in non-viscous water are computed. The rigid sphere calculations for YJm,st(ka,β,m) show that the force is generally directed to a pressure node when m is a positive even integer number (i.e. YJm,st(ka,β,m)>0), whereas the force is generally directed toward a pressure antinode when m is a positive odd integer number (i.e. YJm,st(ka,β,m)<0).

Conclusion

An expression is derived for the radiation force on a rigid sphere placed along the axis of an ideal non-diffracting HOBB of acoustic standing (or stationary) waves propagating in an ideal fluid. The formulation includes results of a previous work done for a zero-order Bessel beam standing wave (m = 0). The proposed theory is of particular interest essentially due to its inherent value as a canonical problem in particle manipulation using the acoustic radiation force of a HOBB standing wave on a sphere. It may also serve as the benchmark for comparison to other solutions obtained by strictly numerical or asymptotic approaches.  相似文献   

8.
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka   (where kk is the wave-number and aa the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study.  相似文献   

9.
We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications.  相似文献   

10.
The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.  相似文献   

11.
The acoustic radiation force on a fluid sphere immersed in water between two boundaries given by a Gaussian beam is theoretically and numerically investigated in this work. Based on the finite series method, the Gaussian beam is expressed in terms of Bessel function and a weighting parameter. The effects of the two boundaries concerned in our study is worked out by the image theory. This work also provides a reference when considering the effects of certain factors such as the radius of the sphere and the distance between the sphere and two boundaries. The contrast with the acoustic radiation force on a fluid sphere near only one boundary is also made in this paper. Our study can offer a theoretical basis for acoustics manipulation, acoustic sensors in the field of biomedical ultrasound and material science.  相似文献   

12.
The radiation force generated upon the scattering of a quasi-Gaussian acoustic beam on a homo-geneous elastic sphere in a fluid is investigated. It is shown that the force depends nonmonotonically on the ratio between the sphere’s diameter and the beam’s waist. For a given beam power, the radiation force has its maximum value when the diameters are roughly egual to each other. This is due to the resonant excitation of shear waves on the sphere’s surface under the impact of acoustic wave in the surrounding fluid.  相似文献   

13.
In this article we introduce the concept of multifrequency radiation force produced by a polychromatic acoustic beam propagating in a fluid. This force is a generalization of dynamic radiation force due to a bichromatic wave. We analyse the force exerted on a rigid sphere by a plane wave with N frequency components. Our approach is based on solving the related scattering problem, taking into account the nonlinearity of the fluid. The radiation force is calculated by integrating the excess of pressure in the quasilinear approximation over the surface of the sphere. Results reveal that the spectrum of the multifrequency radiation force is composed of up to N(N−1)/2 distinct frequency components. In addition, the radiation force generated by plane progressive waves is predominantly caused by parametric amplification. This is a phenomenon due to the nonlinear nature of wave propagation in fluids.  相似文献   

14.
To solve the difficulty of generating an ideal Bessel beam, an simplified annular transducer model is proposed to study the axial acoustic radiation force(ARF) and the corresponding negative ARF(pulling force) exerted on centered elastic spheres for acoustic-vortex(AV) beams of arbitrary orders. Based on the theory of acoustic scattering, the axial distributions of the velocity potential and the ARF for AV beams of different orders generated by the annular transducers with different physical sizes are simulated. It is proved that the pulling force can be generated by AV beams of arbitrary orders with multiple axial regions. The pulling force is more likely to exert on the sphere with a smaller k_0a(product of the wave number and the radius) for the AV beam with a bigger topological charge due to the strengthened off-axis acoustic scattering. The pulling force decreases with the increase of the axial distance for the sphere with a bigger k_0a.More pulling force areas with wider axial regions can be formed by AV beams using a bigger-sized annular transducer.The theoretical results demonstrate the feasibility of generating the pulling force along the axes of AV beams using the experimentally applicable circular array of planar transducers, and suggest application potentials for multi-position stable object manipulations in biomedical engineering.  相似文献   

15.
A mean force exerted on a small rigid sphere by a sound wave in a viscous fluid is calculated. The force is expressed as a sum of drag force coming from the external steady flow existing in the absence of the sphere and contributions that are cross products of velocity and velocity derivatives of the incident field. Because of the drag force and an acoustic streaming generated near the sphere, the mean force does not coincide with the acoustic radiation pressure, i.e., the mean momentum flux carried by the sound field through any surface enclosing the sphere. If the sphere radius R is considerably smaller than the viscous wave penetration depth delta, the drag force can give the leading-order contribution (in powers of delta/R) to the mean force and the latter can then be directed against the radiation pressure. In another limit, delta< or =R, the drag force and acoustic streaming play a minor role, and the mean force reduces to the radiation pressure, which can be expressed through source strengths of the scattered sound field. The effect of viscosity can then be significant only if the incident wave is locally plane traveling.  相似文献   

16.
Most studies investigating the acoustic radiation force upon a target are based on symmetry considerations between the object and the incident beam. Even so, this symmetry condition is not always fulfilled in several cases. An expression for the radiation force is obtained as a function of the beam-shape and the scattering coefficients of an incident wave and the object, respectively. The expression for the radiation force caused by a plane wave on a rigid sphere is used to validate the formula. This method represents a theoretical advance permitting different interpretations and predictions concerned to the acoustic radiation force phenomenon.  相似文献   

17.
The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian beam centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is characterized by an arbitrary waist w0 and a diffraction convergence length known as the Rayleigh range zR. Examples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic sphere’s resonance frequencies for kw0 ? 1 (where this range is of particular interest in describing strongly focused or divergent beams), which may produce particle immobilization along the axial direction. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with conditions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential and momentum flux energy densities and their density functions. It is found that all the components vanish simultaneously at the selected ka values for the nulls. However, for a viscoelastic sphere, acoustic absorption degrades the quasi-zero radiation force.  相似文献   

18.
Acoustic plane progressive waves incident on a sphere immersed in a nonviscous fluid exert a steady force acting along the direction of wave motion. It is shown here that when an elastic gold sphere is coated with a polymer-type (polyethylene) viscoelastic layer, this force becomes a force of attraction in the long wavelength limit. Kinetic, potential and Reynolds stress energy densities are defined and evaluated with and in the absence of absorption in the layer. Without absorption, the mechanical energy density counteracts the Reynolds stress energy density, which causes a repulsive force. However, in the case of absorption, the attractive force is predicted to be a physical consequence of a mutual contribution of both the mechanical and the Reynolds stress energy densities. This condition provides an impetus for further designing acoustic tweezers operating with plane progressive waves as well as fabricating polymer-coated gold particles for specific biophysical and biomedical applications.  相似文献   

19.
F.G. Mitri 《Ultrasonics》2010,50(6):620-627

Objective

The present research examines the acoustic radiation force of axisymmetric waves incident upon a cylinder of circular surface immersed in a nonviscous fluid. The attempt here is to unify the various treatments of radiation force on a cylinder with arbitrary radius and provide a formulation suitable for any axisymmetric incident wave.

Method and results

Analytical equations are derived for the acoustic scattering field and the axial acoustic radiation force. A general formulation for the radiation force function, which is the radiation force per unit energy density per unit cross-sectional surface, is derived. Specialized forms of the radiation force function are provided for several types of incident waves including plane progressive, plane standing, plane quasi-standing, cylindrical progressive diverging, cylindrical progressive converging and cylindrical standing and quasi-standing diverging waves (with an extension to the case of spherical standing and quasi-standing diverging waves incident upon a sphere).

Significance and some potential applications

This study may be helpful essentially due to its inherent value as a canonical problem in physical acoustics. Potential applications include particle manipulation of cylindrical shaped structures in biomedicine, micro-gravity environments, fluid dynamics properties of cylindrical capillary bridges, and the micro-fabrication of new cylindrical crystals to better control light beams.  相似文献   

20.
臧雨宸  高金彪 《计算物理》2020,37(6):700-708
在理论和数值上研究柱面波对多层球的声辐射力.基于声波的散射理论,得到声辐射力的解析解,并给出数值仿真.结果表明:在特定的kakr0处,柱面行波的辐射力可以是负值(k是波数,a是多层球的半径,r0是多层球到声源的距离).随着kr0增加到无穷大,仿真结果退化为平面波的情形.对双层球而言,每层的相对厚度影响曲线共振峰的大小和位置,但对三层球而言没有显著影响.当最内层的介质换成空气时,由于声阻抗差异较大,共振峰更加明显.该研究可以为研发新一代单行波声束声学镊子提供理论指导,该技术在生物医学超声和材料科学领域有广泛的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号