首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waller PA  Pickering WF 《Talanta》1995,42(2):197-204
Re-evaluation of DPASV procedures for determining low levels of Sb (III) and Sb (V) in solution identified several problem areas, e.g. anomalous ASV behaviour, possible formation of an intermediate valency state during the analytical cycle, and chemical interactions in acidified test solutions containing both valency states. Specific determination of Sb (III) can be achieved using base solutions composed of 0.2M HCl (detection limit 10 nM) or acetic acid/acetate buffer (detection limit 600 nM). For the determination of Sb (V), analysis in 2M HCl is recommended [with response in 0.2M HCl being used to correct for any Sb (III) present].  相似文献   

2.
A simple method is described for the rapid and reliable determination of ultratrace concentrations of Sb(III) and Sb(V) in seawater by differential pulse anodic stripping voltammetry. It is based on the well-known dependence of Sb(III)/Sb(V) voltammetric response on acidity conditions. Under our optimised conditions (0.5 mol l−1 HCl for Sb(III) and 5 mol l−1 HCl for total Sb, respectively): (i) a detection limit of 11 ng l−1 is obtained for a 10 min deposition time; (ii) no prior elimination of organic matter is needed; and (iii) antimony can be determined in the presence of natural copper levels. Particular care has been taken in order to understand the chemical processes taking place in all the solutions and reactions involved in the sampling and measuring procedures. Our results revealed the need to consider (i) the effect of photooxydation of synthetic and seawater samples on Sb speciation; and (ii) the stability of Sb(III) both in seawater samples and in the analytical solutions.  相似文献   

3.
The gamma ray induced oxidation of Sb(III) in sulfuric acid solutions was studied. A simplified method depending on selective extraction of the different valency states and radiometric counting was elaborated for oxidation yield determination. The effect of increasing amounts of HCOOH, CH3COOH, NH2CH2COOH, CH3CHOH COOH and H2C2O4 on G[-Sb(III)] was examined. The study enabled a determination of rate constant values for reactions of the used additives with the OH radical in the working solutions.  相似文献   

4.
A systematic investigation was carried out on the extraction of Sb(III) and (V) with HDEHP from various acidic, neutral and alkaline solutions. Antimony(III) is best extracted from neutral or slightly acidic solutions, and the E values are nearly the same in the forward and backward extractions. Antimony(V) extraction is high only from concentrated HCl and HClO4, and the E values are much larger in the backward direction. Extraction and separation of Sb(III) and (V) was studied as a function of acidity, alkalinity, anion and water-miscible organic additives in the aqueous phase, as well as the diluent used and HDEHP molarity. Separation factors obtained for Sb(III) and (V) were higher than when using isopropyl ether as solvent, which was hitherto used for this purpose.  相似文献   

5.
The reduction reaction mechanism of carrier-free125Sb in HCl solution was studied kinetically. Sb(III) and Sb(v) were separated by solvent extraction using n-benzoyl-n-phenylhydroxylamine(BPHA) in chloroform at different constant time in interval and the reaction rate was determined by measuring the radioactivities of125Sb in both organic and aqueous phases. Plot of log[125Sb(V)/ [125Sb(III)+125Sb(V)] against the elasped time do not give straight lines. The curves can be solved to be ABC type reactions by a non-linear squares. On the basis of dependence of the reactions, overall reactions can be expressed as follows;  相似文献   

6.
A new method for the fast and simultaneous determination of Sb(III) and Sb(V) is presented involving the use of anion exchange high-performance liquid chromatography (HPLC), a complexing reagent in the mobile phase, and element specific detection with flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). Chromatographic parameters such as nature and concentration of the complexing and eluting compounds and pH of the mobile phase were investigated in detail. Additionally, the separation of inorganic Sb(III) and Sb(V) from organically bounded antimony (as (CH3)3SbCl2 and (CH3)3Sb(OH)2) was investigated by using anion, and cation exchange, and reversed phase HPLC. Best separation was obtained with anion exchange HPLC under alkaline conditions. Cation exchange and reversed-phase HPLC were not useful for the separation of the above compounds. With FAAS concentrations in the upper mg L–1 range are detectable, which is not sensitive enough for the analyses of environmental samples. When the chromatographic system was coupled to ICP-MS, the detection limits are in the lower μg L–1 range. The method was applied to various environmental samples with anthropogenic and naturally elevated Sb concentrations.  相似文献   

7.
Summary Analytical methods based on differential pulse voltammetry (DPV) have been described for the determination of total As, As(III), As(V), total Sb and Sb(III) as trace to minor constituents in complex glasses. For total As, the sample is decomposed with HF-H2SO4-KMnO4. The As(V) is chemically reduced to As (III) by hypophosphite and a DPV scan is carried out at the dropping mercury electrode from –0.2 to –0.7 Vvs. SCE (E p –0.41V). As(V) is determined by decomposing the sample in HF-H2SO4 and volatilizing the As(III) as AsF3. The chemical reduction of As(V) and the DPV scan are then applied. If the glass can be decomposed with cold HF, the As(III) present in the glass can be determined by applying the DPV scan after cold sample-dissolution. For Sb(III), the sample is decomposed with HF-H2SO4, diluted, and adjusted to 1M in HCl. A DPV scan is conducted from –0.03 to –0.5 V (E p –0.15 V). Sb(V) is not reduced in the 1M HCl supporting electrolyte. Total Sb is determined by using an aliquot of the sample solution adjusted to 6M in HCl. The DPV sweep is carried out from –0.5 to –0.1 V [E p for Sb(V) and Sb(III) is –0.30 V]. The methods have been applied to a wide range of glass compositions and the results compared with values obtained by spectrophotometry and coulometric titration.
Bestimmung von Arsen(III, V) und Antimon(III, V) in Gläsern mit Hilfe der Differential-Puls-Voltammetrie
Zusammenfassung Analytische Methoden auf der Grundlage der Differential-Puls-Voltammetrie (DPV) für die Bestimmung des gesamten Arsens, As(III), As(V), des gesamten Antimons und Sb(III) als Spuren in komplexen Gläsern wurden beschrieben. Zwecks Bestimmung des Gesamt-As wird die Probe mit Flußsäure +Schwefelsäure + Permanganat aufgeschlossen. As(V) wird mit Hypophosphit reduziert und die DPV wird an einer Quecksilber-Tropfelektrode zwischen –0,2 und –0,7V gegen eine ges. Kalomelelektrode (E p =–0,41V) durchgeführt. Zur Bestimmung von As(V) wird die Probe mit HF-H2SO4 unter Verflüchtigung des As(III) als AsF3 aufgeschlossen. Dann erfolgt die Reduktion des As(V) und die DPV. Wenn sich das Glas mit kalter HF lösen läßt, wird anwesendes As(III) mittels DPV in dieser Lösung bestimmt. Zur Bestimmung des Sb(III) wird die Probe mit HF-H2SO4 zersetzt, verdünnt und bis zur 1-Molarität mit HCl versetzt. Dann wird mit DPV zwischen –0,03 und –0,5V gemessen (E p =–0,15V). Sb(V) wird in 1M salzsaurer Lösung nicht reduziert. Das Gesamt-Sb wird in einem Aliquot der Probelösung bestimmt, das dazu mit HCl bis zur 6fachen Molarität versetzt wird. Der DPV-Bereich wird von –0,5 bis –0,1 V ausgenützt (E p f:ur Sb(V) und Sb(III) ist –0,30 V). Das Verfahren wurde für Gläser verschiedenster Zusammensetzung angewendet. Die Ergebnisse wurden mit den Resultaten der Spektrophotometrie und der coulometrischen Titration verglichen.


Presented at the 8th International Microchemical Symposium, Graz, August 25–30, 1980.  相似文献   

8.
Selective sorption of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a microcolumn packed with C16-bonded silica gel phase was used for the determination of Sb(III) and of total inorganic antimony after reducing Sb(V) to Sb(III) by l-cysteine. A flow injection system composed of a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was directly eluted with ethanol into the graphite furnace and determined by AAS. The detection limit for antimony was significantly lowered to 0.007 μg l−1 in comparison to 1.7 μg l−1 for direct injection GFAAS. This procedure was applied for speciation determinations of inorganic antimony in tap water, snow and urine samples. For the investigation of long-term stability of antimony species a flow injection hydride generation atomic absorption spectrometry with quartz tube atomization (FI HG QT AAS) and GFAAS were used for selective determination of Sb(III) in the presence of Sb(V) and total content of antimony, respectively. Investigations on the stability of antimony in several natural samples spiked with Sb(III) and Sb(V) indicated instability of Sb(III) in tap water and satisfactory stability of inorganic Sb species in the presence of urine matrix.  相似文献   

9.
The absorption behavior of Te and Sb in different oxidation states by anion exchange resins in hydrochloric acid medium has been studied. Distribution coefficients for Te(IV), Te(VI) as a function of HCl acid concentration (upto 3M HCl) have been determined. The absorbability for Sb(III) was noticed to be very high and could not be eluted out of the column using HCl as eluent. Sb(V) could be eluted quantitatively using 3M HCl. The present study clearly indicate that due to the EC/β+ decay of the parent isotopes117,118Te, the daughter nuclei117,118Sb are produced predominantly as Sb(III).  相似文献   

10.
A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l−1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l−1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature.  相似文献   

11.
Summary A method is described for the determination of trivalent antimony. It depends on the oxidation of Sb3+ to Sb+ with KMnO4 in sulfuric acid solutions (0.72-3.4N H2SO4) in the presence of fluoride ions and at temperatures below 50°. Amounts of antimony ranging from 15.7gmg to 61 mg can be determined accurately.
Zusammenfassung Eine Methode zur Bestimmung von Sb (III) wurde beschrieben. Sie beruht auf der Oxydation zu Sb(V) mit Permanganat in schwefelsaurer Lösung (0,72-3,4N H2SO4) in Gegenwart von Fluorid bei Temperaturen unter 50° C. Mengen zwischen 15,7gmg und 61 mg Antimon lassen sich genau bestimmen.
  相似文献   

12.
Hydrated antimony pentoxide (HAP) as an absorbent for column operation has been prepared by hydrolysis of SbCl5 with deionized water. Sorption behavior of Sn, Cd, Sb and In was studied on HAP in HCl medium. Radiochemical separation of no-carrier added113mIn from113Sn/125Sb and115mIn from115Cd wa achieved over a HAPO column. The separated products were of high radionuclidic purity.  相似文献   

13.
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 μg g−1, 0.3 μg g−1 SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L−1 citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0–500 mmol L−1), pH (1–6), and temperature (30–60°C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L−1 EDTA and 1 mmol L−1 phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) 123Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min−1) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L−1 and 65 ng L−1 for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L−1 calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.  相似文献   

14.
Atomic fluorescence spectrometry was used as an element-specific detector in hybridation with liquid chromatography (LC) and hydride generation for the speciation of Sb(III), Sb(V) and trimethylantimony dichloride (TMSbCl2). The three species were poorly resolved in a single chromatogram but good results were obtained by anion-exchange chromatography, using a mobile phase with 20 mM EDTA and 8 mM hydrogenphthalate to separate Sb(III) and Sb(V) and 1 mM carbonate at pH 10 to separate Sb(V) and TMSbCl2. Calibration graphs were linear between 2 and 100 μg l−1. Detection limits were 0.9, 0.5 and 0.7 μg l−1 for Sb(III), Sb(V) and TMSbCl2, respectively. The method was applied to the speciation of antimony in environmental samples.  相似文献   

15.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

16.
A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L− 1 H2SO4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g− 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g− 1) for Sb(V) and 5.1% (4.6 ng g− 1) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g− 1 and Sb(V) from 14.7 to 21.2 ng g− 1. The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.  相似文献   

17.
A rapid, high sensitivity method has been developed for the determination of As(III), As(V), Sb(III) and Sb(V) in milk samples by using hydride generation atomic fluorescence spectrometry. The method is based on the leaching of As and Sb from milk through the sonication of samples with aqua regia followed by direct determination of the corresponding hydrides both before and after reduction with KI. It was confirmed by recovery experiments on spiked commercially available samples that neither the reduced nor the oxidized forms of the elements under study or mixtures of the two oxidation states were modified by the room temperature sample treatment with aqua regia. The methodologies developed provided 3σ limit of detection values of 8.1, 10.3, 5.4 and 7.7 ng l−1 for As(III), As(V), Sb(III) and Sb(V) in the diluted samples. Average relative standard deviation values of 5.7, 5.5, 8.2 and 4.7% were found for determination of As(III), As(V), Sb(III) and Sb(V) in commercially available samples of different composition and origin containing from 3.5 to 13.6 ng g−1 total As and from 4.9 to 11.8 ng g−1 total Sb, it being confirmed that As(V) and Sb(V) are the main species present in the samples analyzed (62±5 and 73±5%, respectively). The time required to determine As and Sb species in milk involves 10 min sonication and 30 min prereduction but these steps can be carried out for several sample simultaneously. Additionally the fluorescence measurement step involves less than 20 min for three replicates of all the four measurements required. So, in less than 2 h it is possible to determine the content of As(III), As(V), Sb(III) and Sb(V) in four samples.  相似文献   

18.
Summary A method is described for the speciation of Sb(III) and Sb(V) using HG-AAS. The efficiency of stibine generation using different pH, from Sb(III) and Sb(V) solutions, was tested. At high pH-values Sb(V) is not reduced to form stibine, Sb(III) being selectively determined. The three acids HCl, H2SO4 and H3PO4 at controlled pH were used to generate stibine, H3PO4 being the most satisfactory for antimony speciation. The interference of Sb(V) was studied for the case of Sb(III) determination with stibine generation in H3PO4 medium (pH 1.81). The speciation of Sb(III) and Sb(V) is possible up to a ratio of 1:9.  相似文献   

19.
A novel absorbent was prepared by dimercaptosuccinic acid chemically modifying mesoporous titanium dioxide and was employed as the micro-column packing material for simultaneous separation/preconcentration of inorganic arsenic and antimony species. It was found that both trivalent and pentavalent of inorganic As and Sb species could be adsorbed quantitatively on dimercaptosuccinic acid modified TiO2 within a pH range of 4–7, and only As(III) and Sb(III) could be quantitatively retained on the micro-column within a pH range of 10–11 while As(V) and Sb(V) were passed through the micro-column without the retention. Based on this fact, a new method of flow injection on-line micro-column separation/preconcentration coupled to inductively coupled plasma optical emission spectrometry was developed for simultaneous speciation of trace inorganic arsenic and antimony in natural waters. Under the optimized conditions, an enrichment factor of 10 and sampling frequency of 10 h− 1 were obtained with on-line mode. The detection limits of As(III), As(V), Sb(III), and Sb(V) are 0.53, 0.49, 0.77 and 0.71 ng mL− 1 for on-line mode and as low as 0.11, 0.10, 0.15 and 0.13 ng mL− 1 for off-line mode due to its higher enrichment factor (50), respectively. The relative standard deviations of two modes are less than 6.7% (C = 20 ng mL− 1, n = 7). The concentration ratio of lower oxidation states/higher oxidation states changing from 1:10 to 10:1 has no obvious effect on the recoveries of As(III) and Sb(III). In order to validate the developed method, two certified reference materials of GSBZ5004-88 and GBW(E)080545 water sample were analyzed and the determined values are in good agreement with the certified values. The proposed method was successfully applied to the simultaneous speciation of inorganic arsenic and antimony in natural waters.  相似文献   

20.
A simple, rapid and sensitive method is described for the determination of trace concentrations of antimony by inductively-coupled plasma atomic emission spectrometry with hydride generation. Hydrochloric acid (1 M) is the best medium for stibine generation, but antimony(III) is also effectively reduced to stibine in 1 M malic acid or 0.5 M tartaric acid, whereas antimony(V) gives no significant signal in either of these acids. This permits the differential determination of Sb(III) and Sb(V). Most of the inter-element interference effects can be minimized by thiourea, bur standard additions are recommended for accurate determinations. Thiourea is also effective in prereducing Sb(V) to Sb(III). The detection limit is 0.19 ng Sb ml?1 and the calibration graph is linear up to 100 μg ml?1. The r.s.d, at 1 and 100 ng Sb ml?1 are 3.8 and 2.1%, respectively. The method is applied to copper metal and to speciation of antimony in waste water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号