首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of Mn(II) and [NEt(4)]CN leads to the isolation of solvated [NEt(4)]Mn(3)(CN)(7) (1) and [NEt(4)](2) Mn(3)(CN)(8) (2), which have hexagonal unit cells [1: R3m, a = 8.0738(1), c = 29.086(1)??; 2: P3m1, a = 7.9992(3), c = 14.014(1)??] rather than the face centered cubic lattice that is typical of Prussian blue structured materials. The formula units of both 1 and 2 are composed of one low- and two high-spin Mn(II) ions. Each low-spin, octahedral [Mn(II)(CN)(6)](4-) bonds to six high-spin tetrahedral Mn(II) ions through the N?atoms, and each of the tetrahedral Mn(II) ions are bound to three low-spin octahedral [Mn(II)(CN)(6)](4-) moieties. For 2, the fourth cyanide on the tetrahedral Mn(II) site is C?bound and is terminal. In contrast, it is orientationally disordered and bridges two tetrahedral Mn(II) centers for 1 forming an extended 3D network structure. The layers of octahedra are separated by 14.01?? (c?axis) for 2, and 9.70?? (c/3) for 1. The [NEt(4)](+) cations and solvent are disordered and reside between the layers. Both 1 and 2 possess antiferromagnetic superexchange coupling between each low-spin (S = 1/2) octahedral Mn(II) site and two high-spin (S = 5/2) tetrahedral Mn(II) sites within a layer. Analogue 2 orders as a ferrimagnet at 27(±1)?K with a coercive field and remanent magnetization of 1140?Oe and 22,800?emuOe?mol(-1), respectively, and the magnetization approaches saturation of 49,800?emuOe?mol(-1) at 90,000?Oe. In contrast, the bonding via bridging cyanides between the ferrimagnetic layers leads to antiferromagnetic coupling, and 3D structured 1 has a different magnetic behavior to 2. Thus, 1 is a Prussian blue analogue with an antiferromagnetic ground state [T(c) = 27?K from d(χT)/dT].  相似文献   

2.
The cyano-bridged trinuclear compound, (NEt(4))[Mn(2)(salmen)(2)(MeOH)(2)Fe(CN)(6)] (1) (salmen(2)(-) = rac-N,N'-(1-methylethylene)bis(salicylideneiminate)), reported previously by Miyasaka et al. (ref 19d) has been reinvestigated using combined ac and dc susceptibility measurements. The strong frequency dependence of the ac susceptibility and the slow relaxation of the magnetization show that 1 behaves as a single-molecule magnet with an S(T) = (9)/(2) spin ground state. Its relaxation time (tau) follows an Arrhenius law with tau(0) = 2.5 x 10(-)(7) s and Delta(eff)/k(B) = 14 K. Moreover, below 0.3 K, tau saturates around 470 s, indicating that quantum tunneling of the magnetization becomes the dominant process of relaxation. (NEt(4))[Mn(2) (5-MeOsalen)(2)Fe(CN)(6)] (2) (5-MeOsalen(2)(-) = N,N'-ethylenebis(5-methoxysalicylideneiminate)) is a heterometallic one-dimensional assembly made of the trinuclear [Mn(III)(SB)-NC-Fe(III)-CN-Mn(III)(SB)] (SB is a salen-type Schiff-base ligand) motif similar to 1. Compound 2 has two types of bridges, a cyano bridge (-NC-) and a biphenolate bridge (-(O)(2)-), connecting Mn(III) and Fe(III) ions and the two Mn(III) ions, respectively. Both bridges mediate ferromagnetic interactions, as shown by modeling the magnetic susceptibility above 10 K with g(av) = 2.03, J(Mn)(-)(Fe)/k(B) = +6.5 K, and J'/k(B) = +0.07 K, where J' is the exchange coupling between the trimer units. The dc magnetic measurements of a single crystal using micro-SQUID and Hall-probe magnetometers revealed a uniaxial anisotropy (D(T)/k(B) = -0.94 K) with an easy axis lying along the chain direction. Frequency dependence of the ac susceptibility and time dependence of the dc magnetization have been performed to study the slow relaxation of the magnetization. A mean relaxation time has been found, and its temperature dependence has been studied. Above 1.4 K, both magnetic susceptibility and relaxation time are in agreement with the dynamics described in the 1960s by R. J. Glauber for one-dimensional systems with ferromagnetically coupled Ising spins (tau(0) = 3.7 x 10(-)(10) s and Delta(1)/k(B) = 31 K). As expected, at lower temperatures below 1.4 K, the relaxation process is dominated by the finite-size chain effects (tau'(0) = 3 x 10(-)(8) s and Delta(2)/k(B) = 25 K). The detailed analysis of this single-chain magnet behavior and its two regimes is consistent with magnetic parameters independently estimated (J'and D(T)) and allows the determination of the average chain length of 60 nm (or 44 trimer units). This work illustrates nicely a new strategy to design single-chain magnets by coupling ferromagnetically single-molecule magnets in one dimension.  相似文献   

3.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

4.
The syntheses, structures, and magnetic properties of a series of di- and trivalent hydridotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) cyanomanganates are described. Treatment of tris(acetylacetonate)manganese(III) [Mn(acac)(3)] with KTp* and tetra(ethyl)ammonium cyanide affords [NEt(4)][(Tp*)Mn(II)(κ(2)-acac)(CN)] (1), as the first monocyanomanganate(II) complex; attempted oxidation of 1 with iodine affords {(Tp*)Mn(II)(κ(2)-acac(3-CN))}(n) (2) as a one-dimensional chain and bimetallic {[NEt(4)][(Tp*)Mn(II)(κ(2)-acac(3-CN))](2)(μ-CN) (3) as the major and minor products, respectively. A fourth complex, [NEt(4)][(Tp*)Mn(II)(η(2)-acac(3-CN))(η(1)-NC-acac)] (4), is obtained via treatment of Mn(acac(3-CN))(3) with KTp* and [NEt(4)]CN, while [NEt(4)](2)[Mn(II)(CN)(4)] (5) was prepared from manganese(II) trifluoromethanesulfonate and excess [NEt(4)]CN. Tricyanomanganate(III) complexes, [cat][(Tp*)Mn(III)(CN)(3)] [cat = NEt(4)(+), 7; PPN(+), 8], are prepared via sequential treatment of Mn(acac(3-CN))(3) with KTp*, followed by [NEt(4)]CN, or [cat](3)[Mn(III)(CN)(6)] with (Tp*)SnBu(2)Cl. Magnetic measurements indicate that 1, 2, and 4 contain isotropic Mn(II) (S = (5)/(2); g = 2.00) centers, and no long-range magnetic ordering is found above 1.8 K. Compounds 7 and 8 contain S = 1 Mn(III) centers that adopt singly degenerate spin ground states without orbital contributions to their magnetic moments.  相似文献   

5.
Diruthenium tetracarboxylates monocations are utilized as building blocks for cubic 3-D network structured molecule-based magnets. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] [M = Cr (1a), Fe (2), Co (3)] were prepared in aqueous solution. Powder X-ray diffraction indicates that they have body-centered cubic structures (space group = Imm, a = 13.34, 13.30, and 13.10 A for 1a, 2, and 3, respectively), which was confirmed for 1a by Reitveld analysis of the synchrotron powder data [a = 13.3756(5) A]. [Ru(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)].xMeCN [M = Cr, x = 1.8 (1b); M = Mn, x = 3.3 (4)] were prepared from acetonitrile. The magnetic ordering of 1a (33 K), 1b (34.5 K), 2 (2.1 K), and 4 (9.6 K) was determined from the temperature dependencies of the in-phase (chi') alternating current (AC) susceptibility. The field dependence of the magnetization, M(H), at 2 K for 1a showed an unusual constricted hysteresis loop with a coercive field, H(cr), of 470 Oe while the M(H) data for 1b, 2, and 4 showed a normal hysteresis loop with a coercive field of 1670, 10, and 990 Oe, respectively. The (57)Fe M?ssbauer spectrum of 2 is consistent with the presence of low spin Fe(III) (delta = -0.05 mm/s; DeltaE = 0.33 mm/s) at room temperature, and the onset of 3-D magnetic ordering at lower temperature (<2 K). The effects of M(III) in [M(III)(CN)(6)](3-), and the large zero-field splitting (D) of diruthenium tetracarboxylates are discussed. The increasing critical temperatures T(c), with increasing S could not be accounted for by mean field models without significantly different J values for 1a, 4, and 2. By fitting the T(c) data with mean field models [H = -2JS(Ru).(S(M) - micro(B)(g(Ru)S(Ru) + g(M)S(M))H], J/k(B) are 4.46, 1.90, and 0.70 K for 1a, 4, and 2, respectively.  相似文献   

6.
Linear chain thiocyanate complexes of M(NCS)(2)(OCMe(2))(2) (M = Fe, Mn, Cr) composition have been prepared and structurally, chemically, and magnetically characterized. Fe(NCS)(2)(OCMe(2))(2) exhibits metamagnetic-like behavior, and orders as an antiferromagnet at 6 K. The Mn and Cr compounds are antiferromagnets with T(c) of 30 and 50 K, respectively, with J/k(B) = -3.5 (-2.4 cm(-1)) and -9.9 K (-6.9 cm(-1)), respectively, when fit to one-dimensional (1-D) Fisher chain model (H = -2JS(i)·S(j)). Co(NCS)(2) was prepared by a new synthetic route, and powder diffraction was used to determine its structure to be a two-dimensional (2-D) layer with μ(N,S,S)-NCS motif, and it is an antiferromagnet (T(c) = 22 K; θ = -33 K for T > 25 K). M(NCS)(2)(OCMe(2))(2) (M = Fe, Mn) and Co(NCS)(2) react with (NBu(4))(TCNE) in dichloromethane to form M(TCNE)[C(4)(CN)(8)](1/2), and in acetone to form M[C(4)(CN)(8)](OCMe(2))(2) (M = Fe, Mn, Co). These materials possess μ(4)-[C(4)(CN)(8)](2-) that form 2-D layered structural motifs, which exhibit weak antiferromagnetic coupling. Co(TCNE)[C(4)(CN)(8)](1/2) behaves as a paramagnet with strong antiferromagnetic coupling (θ = -50 K).  相似文献   

7.
Li D  Parkin S  Wang G  Yee GT  Holmes SM 《Inorganic chemistry》2006,45(5):1951-1959
The synthesis and spectroscopic and magnetic characterization of several hydridotris(3,5-dimethylpyrazol-1yl)borate (Tp*) iron(II) and iron(III) tricyanide complexes, a rectangular cluster, and a one-dimensional chain of squares are described. Treatment of [NEt4][(Tp*)Fe(III)(CN)3] (3) with manganese(II) triflate in dimethylformamide (DMF) affords rectangular clusters (6, {[(Tp)Fe(CN)2(mu-CN)Mn(DMF)4]2[OTf]2}.2DMF), while tosylate salts afford one-dimensional networks (5, {Mn(II)(DMF)2(mu-OTs)(mu-NC)2(NC)Fe(III)(Tp*)}n) containing embedded [(Tp*)2Fe(III)2Mn(II)2(CN)6]2+ clusters via in situ trapping; the cluster and network crystallize in the monoclinic (6, P2(1)/n) and triclinic (5, P1) space groups, respectively. The 1-D network (5) appears to be derived from {cis-(mu-O3SC6H4Me)2Mn(II)(DMF)4}n (4, P2(1)/n), which is obtained via crystallization of Mn(OTs)2 from DMF/Et2O mixtures. For 4, magnetic studies indicate that the Mn(II) centers are magnetically isolated, with calculated J, g, and theta constants of 6.7 x 10(-3) cm(-1), 2.03, and -0.52 K. Additional magnetic studies of 5 and 6 indicate that the [(Tp*)Fe(III)(CN)3]- centers are highly anisotropic (g = 2.9) and are antiferromagnetically coupled to adjacent Mn(II) centers. For 5 and 6, fitting of the chiT vs T data via the Curie-Weiss expression affords Curie (6.25 and 10.8 cm(3) K mol(-1)) and Weiss (-14.37 and -8.80 K) constants that are consistent with antiferromagnetically coupled low-spin Fe(III) and high-spin Mn(II) centers; least-squares fitting of the chiT vs T data using molecular field theory affords g(avg.), J1, J2, and J' values of 2.25, -1.72, -0.58, and -0.12 cm(-1) for 5. Overall, bridging tosylates appear to be poor communicators of spin information. For 6, the g, J1, and J2 (2.15, -2.02, and -0.78 cm(-1)) values were obtained via least-squares fitting of the chiT vs T data using an expression derived using the Kambe vector coupling method; simulations of the data via MAGPACK afford g(avg.) and J(iso) values of 2.1 and -2.1 cm(-1).  相似文献   

8.
The title compound, (NEt(4))[[Mn(salen)](2)Fe(CN)(6)] (1), was synthesized via a 1:1 reaction of [Mn(salen)(H(2)O)]ClO(4) with (NEt(4))(3)[Fe(CN)(6)] in a methanol/ethanol medium (NEt(4)(+) = tetraethylammonium cation, salen(2)(-) = N,N'-ethylenebis(salicylidene)iminate). The two-dimensional layered structure of 1 was revealed by X-ray crystallographic analysis: 1 crystallizes in monoclinic space group P2(1)/c with cell dimensions of a = 12.3660(8) A, b = 15.311(1) A, c = 12.918(1) A, beta = 110.971(4) degrees, Z = 2 and is isostructural to the previously synthesized compound, (NEt(4))[[Mn(5-Clsalen)](2)Fe(CN)(6)] (5-Clsalen(2-) = N,N'-ethylenebis(5-chlorosalicylidene)iminate; Miyasaka, H.; Matsumoto, N.; Re, N.; Gallo, E.; Floriani, C. Inorg. Chem. 1997, 36, 670). The Mn ion is surrounded by an equatorial salen quadridentate ligand and two axial nitrogen atoms from the [Fe(CN)(6)](3-) unit, the four Fe[bond]CN groups of which coordinate to the Mn ions of [Mn(salen)](+) units, forming a two-dimensional network having [[bond]Mn[bond]NC[bond]Fe[bond]CN[bond]](4) cyclic repeating units. The network is spread over the bc-plane of the unit cell, and the layers are stacked along the a-axis. The countercation NEt(4)(+) is located between the layers. Compound 1 is a ferrimagnet with T(c) = 7.7 K and exhibits hysteresis with a remnant magnetization of 13.44 cm(3).mol(-1) (M/N mu(B) = 2.4) at zero field and a coercivity of 1000 Oe when the powder sample was measured at 1.9 K. Magnetic measurements of a direction-arranged single crystal were also carried out. The orientation of the crystallographic axes of a selected single crystal was determined by X-ray analysis, and magnetization was measured when an external field was applied in the a*, b, and c directions. The magnetization in the a* direction increased more easily than those in the b and c directions below the critical temperature. No hysteresis was observed only for the measurement in the a* direction, indicating the presence of strong structural anisotropy with potential anisotropy on Mn(III) ions.  相似文献   

9.
A new tricyanoferrate(III) building block and a trinuclear single-molecule magnet derivative are described. The treatment of a 2:1 ratio of [NEt(4)][(Tp*(Bn))Fe(III)(CN)(3)]·H(2)O·MeOH [1; Tp*(Bn) = tris(3,5-dimethyl-4-benzyl)pyrazolylborate] with nickel(II) trifluoromethanesulfonate gives {[(Tp*(Bn))Fe(III)(CN)(3)](2)[Ni(II)(DMF)(4)]}·2DMF (2; DMF = N,N-dimethylformamide). The symmetry-equivalent Fe(III)(LS) ions lead to a favorable alignment of anisotropy tensors (i.e., Fe···B axes) in 2, and an energy barrier of Δ(eff)/k(B) = 16.7 K is found for the S(T) = 2 complex.  相似文献   

10.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

11.
The crystal structures of the 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, TCNQF(4), electron transfer salts of meso-tetraphenylporphinatomagnesium(II), [MgTPP][TCNQF(4)].PhMe and [MgTPP][TCNQF(4)].3(1,2-C(6)H(4)Cl(2)), and meso-tetrakis(3,4,5-trimethoxyphenyl)porphinatomagnesium(II), [MgT(3,4,5-OMe)PP][TCNQF(4)].3(1,2-C(6)H(4)Cl(2)), provide the first structurally characterized examples of 1-D metal-radical chains involving [Mg(II)(porphyrin(*))](+). These salts possess [TCNQF(4)](*-) stabilized by trans-mu-coordination to Mg(II) and exhibit nu(CN) at 2199 and 2177, 2212 and 2187, and 2194 and 2172 cm(-1), respectively. The [TCNQF(4)](*-) species is planar and bridges two cations with MgN distances of 2.266(16), 2.221(2), and 2.276(3) A, respectively, which are shorter than the MnN 2.321(3) A distance observed for [MnT(3,4,5-OMe)PP][TCNQF(4)].3(1,2-C(6)H(4)Cl(2)). The room-temperature effective moments for [MgTPP][TCNQF(4)].xS (S = PhMe and 1,2-C(6)H(4)Cl(2)) and [MgTPP][C(4)(CN)(6)].PhMe are consistent with the calculated spin only value of 2.45 micro(B) with weak antiferromagnetic coupling (J(intra)/k(B) approximately -2.9 K; H = -2JSa.Sb) for these [TCNQF(4)](*-) salts and for this [C(4)(CN)(6)](*-) salt (J(intra)/k(B) approximately -0.8 K) on the basis of fits to several models. The coupling is significantly reduced with respect to that of the Mn analogues due to lack of spin on the metal site for [Mg(II)(por(*))](+). The antiferromagnetic coupling is enhanced for [MgT(3,4,5-OMe)PP][TCNQF(4)] with respect to [MgTPP][TCNQF(4)] as [TCNQF(4)](*-) gets closer to the [Mg(II)(por(*))](+) plane, which leads to greater interactions and coupling.  相似文献   

12.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   

13.
The reaction of V(III)(THF)3Cl3 with NEt(4)CN in acetonitrile (MeCN) forms (NEt4)3[V(III)(CN)6].4MeCN (1), which after characterization was used as a molecular building block toward the synthesis of Prussian blue structured magnets. The reaction of 1 with [Cr(II)(NCMe)4](BF4)2 forms Cr(II)(0.5)Cr(III)[V(II)(CN)6].zMeCN via internal electron transfer, whose structure and magnetic properties are dependent on the degree of solvation, z. When solvated, Cr(II)(0.5)Cr(III)[V(II)(CN)6].1.2MeCN (2) is a mixture of crystalline and amorphous fractions that yield a material with two magnetic phases: bulk ferrimagnetic phase/crystalline [faced-centered-cubic lattice with a = 10.55(2) A] and cluster-glass phase/amorphous. The bulk ferrimagnetic phase exhibits a critical temperature, Tc, of 110 K, while the amorphous cluster-glass phase exhibits a freezing temperature, Tf, of approximately 25 K. Amorphous Cr(II)(0.5)Cr(III)[V(II)(CN)6].0.1MeCN (3) was determined to be the pure cluster-glass phase. This is an overall enhancement of 85 K (350%) in the magnetic ordering temperature via solvation, z. The coercivity was also increased 4-fold from 890 (2) and 3900 Oe (3) via desolvation.  相似文献   

14.
The crystal structures of [MnTPP]{Ni[S2C2H(CN)]2} [MnTPP = (meso-tetraphenylporphinato)manganese(III)] and [MnTPP]{Ni[S2C2(CN)2]2} have been determined. These salts possess trans-mu-coordination of S = 1/2 {Ni[S2C2H(CN)]2}*- and {Ni[S(2)C(2)(CN)(2)](2)}*- to Mn(III) and form parallel 1-D coordination polymer chains exhibiting nu(CN) at 2210 and 2200 and 2220 and 2212 cm(-1), respectively. The bis(dithiolato) monoanions are planar and bridge two cations with MnN distances of 2.339(16), and 2.394(3) A, respectively, which are comparable to related MnN distances observed for [MnTPP][TCNE].x(solvates). In addition, [MnTP'P]{Ni[S2C2(CN)2]2} {H2TP'P = meso-tetrakis[3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin] and [MnTP'P(OH2)]{Ni[S2C2(CN)2]2} were prepared. The latter forms isolated paramagnetic ions. The room-temperature values of chiT for 1-D [MnTPP]{Ni[S2C2H(CN)]2}, [MnTPP]{Ni[S2C2(CN)2]2}, and [MnTP'P]{Ni[S2C2(CN)2]2} are 2.55, 3.28, and 2.86 emu K/mol, respectively. Susceptibility (chi) measurements between 2 and 300 K reveal weak antiferromagnetic interactions with theta= -5.9 and -0.2 K for [MnTPP]{Ni[S(2)C(2)H(CN)](2)} and [MnTPP]{Ni[S2C2(CN)2]2}, respectively, and stronger antiferromagnetic coupling of -50 K for [MnTP'P]{Ni[S2C2(CN)2]2} from fits of chi(T) to the Curie-Weiss law. The 1-D intrachain coupling, J(intra), of [MnTPP]{Ni[S2C2H(CN)]2} and [MnTPP]{Ni[S2C2(CN)2]2} was determined from modeling chiT(T) by the Seiden expression (H = -2JSi.Sj) with J/kB = -8.00 K (-5.55 cm(-1); -0.65 meV) for [MnTPP]{Ni[S2C2H(CN)]2}, J/kB = -3.00 K (-2.08 cm(-1); -0.25 meV) for [MnTP'P]{Ni[S2C2(CN)2]2}, and J/kB = -122 K (-85 cm(-1)) for [MnTP'P]{Ni[S2C2(CN)2]2}. These observed negative J(intra)/kB values are indicative of antiferromagnetic coupling. These materials order as ferrimagnets at 5.5, 2.3, and 8.0 K, for [MnTPP]{Ni[S2C2H(CN)]2}, [MnTPP]{Ni[S2C2(CN)2]2}, and [MnTP'P]{Ni[S2C2(CN)2]2}, respectively, based upon the temperature at which maximum in the 10 Hz chi'(T) data occurs. [MnTP'P]{Ni[S2C2(CN)2]2} has a coercivity of 17,700 Oe and remanent magnetizations of 7250 emu Oe/mol at 2 K and 17 Oe and 850 emu Oe/mol at 5 K; hence, upon cooling it goes from being a soft magnet to being a very hard magnet.  相似文献   

15.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

16.
The kinetic inertness of the hexaaquachromium(III) (kH2O=2.4x10(-6) s(-1)) has led to challenges with respect to incorporating CrIII ions into Prussian blue-type materials; however, hexakis(acetonitrile)chromium(III) was shown to be substantially more labile (approximately 10(4) times) and enables a new synthetic route for the synthesis of these materials via nonaqueous solvents. The synthesis, spectroscopic, and physical properties of Cr[M(CN)6] (M=V, Cr, Mn, Fe) Prussian blue analogues synthesized from [CrIII(NCMe)6]3+ and the corresponding [MIII(CN)6]3- are described. All these compounds {(NEt4)0.02CrIII[VIII(CN)6]0.98(BF4)(0.08).0.10MeCN (1), CrIII[CrIII(CN)6].0.16MeCN (2), CrIII[MnIII(CN)6].0.10MeCN (3), and (NEt4)0.04CrIII0.64CrIV0.40[FeII(CN)6]0.40[FeIII(CN)6]0.60(BF4)(0.16).1.02MeCN (4)} are ferrimagnets exhibiting cluster-glass behavior. Strong antiferromagnetic coupling was observed for M=V, Cr, and Mn with Weiss constants (theta) ranging from -132 to -524 K; and in 2, where the strongest coupling is observed (theta=-524 K), the highest Tc (110 K) value was observed. Weak antiferromagnetic coupling was observed for M=Fe (theta=-12 K) leading to the lowest Tc (3 K) value in this series. Weak coupling and the low Tc value observed in 4 were additionally contributed by the presence of both [FeII(CN)6]4- and [FeIII(CN)6]3- as confirmed by 57Fe-M?ssbauer spectroscopy.  相似文献   

17.
The reaction of K3[M(III)(ox)3].3H2O [M = V (1), Cr; ox = oxalate], Mn(II)/V(II), and [N(n-Bu)4]Br in water leads to the isolation of 2-D V-based coordination polymers, [[N(n-Bu)4][Mn(II)V(III)(ox)3]]n (2), [[N(n-Bu)4][V(II)Cr(III)(ox)3]]n (3), [[N(n-Bu)4][V(II)V(III)(ox)3]]n (4), and an intermediate in the formation of 4, [[N(n-Bu)4][V(II)V(III)(ox)3(H2O)2]]n.2.5H2O (4a), while 1-D [V(II)(ox)(H2O)2]n (5) is obtained by using Na2ox and [V(OH2)6]SO4 in water. The structures of 1-5 have been investigated by single crystal and/or powder X-ray crystallography. In 1, V(III) is coordinated with three oxalate dianions as an approximately D3 symmetric, trigonally distorted octahedron. 1 is paramagnetic [mu(eff) = 2.68 mu(B) at 300 K, D = 3.84 cm(-1) (D/k(B) = 5.53 K), theta = -1.11 K, and g = 1.895], indicating an S = 1 ground state. 2 exhibits intralayer ferromagnetic coupling below 20 K, but does not magnetically order above 2 K, and 3 shows a strong antiferromagnetic interaction between V(II), S = 3/2 and Cr(III), S = 3/2 ions (theta = -116 K) within the 2-D layers. 4 and 4a magnetically order as ferrimagnets at T(c)'s, taken as the onset of magnetization, of 11 and 30 K, respectively. The 2 K remanent magnetizations are 2440 and 2230 emu.Oe mol(-1) and the coercive fields are 1460 and 4060 Oe for 4 and 4a, respectively. Both 4 and 4a clearly show frequency dependence, indicative of spin-glass-like behavior. The glass transition temperatures were at 6.3 and 27 K, respectively, for 4 and 4a. 1-D 5 exhibits antiferromagnetic coupling of -4.94 cm(-1) (H = -2Jsigma(i=1)n.S(i-1) - gmu(B)sigma(i=0)(n)H.S(i)) between the V(II) ions.  相似文献   

18.
The synthesis, crystal structures and magnetic properties of five new manganese compounds are reported. These include a linear trinuclear cluster [Mn(II)(3)(O(2)CCHMe(2))(6)(dpa)(2)].2MeCN (1) (dpa = 2,2'-dipyridylamine), a tetranuclear cluster [Mn(II)(2)Mn(III)(2)O(2)(O(2)CCMe(3))(6)(bpy)(2)] (3) (bpy = 2,2'-bipyridine), and chain coordination polymers composed of cluster blocks such as Mn(3), Mn(3)O, and Mn(4)O(2) bridged by 2,2'-bipyrimidine (bpm) or hexamethylentetramine (hmta) ligands to give ([Mn(II)(3)(O(2)CCHMe(2))(6)(bpm)].2EtOH)(n) (2), [Mn(II)(2)Mn(III)(2)O(2)(O(2)CCHMe(2))(6)(bpm)(EtOH)(4)](n) (4), and (([Mn(II)Mn(III)(2)O(O(2)CCHMe(2))(6)(hmta)(2)].EtOH)(n) (5). The magnetic analysis of the compounds was achieved using a combination of vector coupling and full-matrix diagonalization methods. Susceptibility data for compound 1 was fitted using a vector coupling model to give g = 2.02(1) and 2J/k(B) = -5.38(2) K. To model the trimer chain, we used vector coupling for initial values of J(1) and then diagonalization techniques to estimate J(2) to give g = 1.98(1), 2J(1)/k(B) = -3.3(1) K and 2J(2)/k(B) = -1.0(1) K by approximating the system to a dimer of trimers. The analysis of 3 was made difficult by the mixture of polymorphs and the difficulties of a three-J model, while for 4 an analysis was not possible because of the size of the computation and the relative magnitudes of the three couplings. Compound 5 was modeled using the same techniques as 2 to give g = 1.99(1), 2J(1)/k(B) = +32.5(2) K, 2J(2)/k(B) = -16.8(1) K, and 2J(3)/k(B) = +0.4(1) K. The combination of techniques has worked well for compounds 2 and 5 and thus opens up a method of modeling complex chains.  相似文献   

19.
Mn(II)(TCNE)I(OH(2)) was isolated from the reaction of tetracyanoethylene (TCNE) and MnI(2)(THF)(3), and has a 2-D structure possessing an unusual, asymmetric bonded μ(4)-[TCNE]˙(-). Direct antiferromagnetic coupling between the S = 5/2 Mn(II) and S = 1/2 [TCNE]˙(-) leads to magnetic ordering as a canted antiferrimagnet at a T(c) of 171 K.  相似文献   

20.
Li D  Parkin S  Wang G  Yee GT  Holmes SM 《Inorganic chemistry》2006,45(7):2773-2775
Treatment of mer-VCl3(THF)3 with KTp [Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate], followed by [NEt4]CN in acetonitrile, affords [NEt4][(Tp)V(III)(CN)3].H2O (1.H2O); aerobic oxidation affords [NEt4][(Tp)V(IV)(O)(CN)2] (2). Subsequent treatment of 2 with Mn(II)(OTf)2 (OTf = trifluoromethanesulfonate) and 2,2'-bipyridine affords {[(Tp)V(O)(CN)2]2[Mn(II)(bipy)2]2[OTf]2}.2MeCN (3). Magnetic measurements indicate that 1-3 exhibit S = 1, (1/2), and 4 spin ground states, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号