首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The isotopic compositions of biogenic carbon dioxide and methane from different sites were investigated. The δ13C values of methane vary mainly between ?55‰ and ?75‰ whereas δ13C values of carbon dioxide were found from about + 11‰ to ?23‰. Especially the latter ones are not so typical for microbial gases. The different sites don't vary over the whole scales but form certain groups. Secondary effects like diffusion change the δ values of both components in an even more negative direction, while oxidation processes near the surface result in more positive δ13C values for methane and very negative δ13C values for carbon dioxide.  相似文献   

2.
This paper presents the results obtained by means of the steady state isotopic transient kinetic analysis for complete methane oxidation over the Pd(PdO)Al2O3 catalyst. The average surface life-time and surface concentration of methane and carbon dioxide were determined. It was found out that on the palladium catalyst there are adsorbed small amounts of methane (which does not take part in the process of oxidation) only at the temperature corresponding to the starting point of methane oxidation. Additionally, in the steady state of methane oxidation on the palladium catalyst there are present two different kinds of carbon dioxide: short- and long-resided on the catalyst surface. The average surface life-time of both kinds of carbon dioxide decreases with temperature. The surface concentration of long-resided carbon dioxide increases with temperature whereas the small maximum at about 380 °C is noticed for the surface concentration of short-resided carbon dioxide.  相似文献   

3.
Ab initio molecular dynamics simulations of a solitary perdeuterated water molecule solvated in supercritical carbon dioxide have been performed along an isotherm at three different densities. Electron donor-acceptor interactions between the oxygen atom of water and the carbon atom of CO2 as well as hydrogen bonded interactions between the two molecules have been shown to play a dominant role in the solvation. The mean dipole moment of the water molecule increases with the density of the solution, from a value of 1.85 D at low density to around 2.15 D at the highest density. The increase in the solvent density causes the water molecule to exhibit a range of behavior, from a free molecule to one that interacts strongly with CO2. A blue shift in the bending mode of water has been observed with increasing solvent density. The carbon dioxide molecules which are present in the first neighbor shell of water are found to exhibit larger propensity to deviate from a linear geometry in their instantaneous configurations.   相似文献   

4.
The injection of carbon dioxide into a reservoir that contains methane and water in a free state is investigated. A mathematical model of this process is proposed that suggests the formation of the CO2 hydrate on the surface of the phase transition separating regions of methane and carbon dioxide. The conditions on the interface are derived, and an asymptotic solution of the problem is found. Critical diagrams are obtained that define parameter ranges in which there is full or partial transition of gaseous carbon dioxide to a hydrate state.  相似文献   

5.
The bonding features and electronic structures of a series of transition metal carbon dioxide complexes have been studied by density functional theory (DFT) calculations combined with natural bond orbital (NBO) analysis and energy-decomposition analysis (EDA). NBO analysis shows that the interaction between the metal center and the carbon atom of the carbon dioxide ligand (M–C) is stronger than the other interaction between the metal center and the carbon dioxide ligand. Natural hybrid orbital (NHO) analysis gives the detailed bonding features of the M–C bond for each complex. The NBO charge distribution on the carbon dioxide unit in all studied complexes is negative, which indicates charge transfer from the metal center to the carbon dioxide ligand for all studied complexes. The hyperconjugation effect of the metal center and the two C–O bonds of the carbon dioxide ligand has been estimated using the NBO second-order perturbation stabilization energy. It was found that the NBO second-order stabilization energy of C–O?→?nM* is sensitive to the coordinated sphere and the metal center. Frontier molecular orbital (FMO) analysis shows that complexes 1 and 4 may be good nucleophilic reagents for activation of the carbon dioxide molecule. However, the EDAs show that the M–CO2 bond interaction energy of complex 4 is about two times as large as that of complex 1. The high M–CO2 bond interaction energy of complex 4 may limit its practical application.  相似文献   

6.
Interaction induced Raman light scattering is presented as a unique tool for the understanding of solvation processes from the solute's point of view in weakly interacting solute-solvent systems. A review of pertinent literature shows that this technique should be useful at least in single-phase binary mixtures such as supercritical solutions. Methane is used here as a probe molecule at 10mol% concentration (as the solute) and 90mol% CO and CO2 are the solvents. The light scattering results, i.e., the dependence of the anisotropic intensities divided by density (I/d) on the density, are interpreted by use of the Duh-Haymet-Henderson closure (bridge) function of the Ornstein-Zernike integral equation. These data, together, are examined in the context of known supercritical solution thermodynamics and statistical mechanical results. It is shown that the light scattering I/d data versus density yield maxima in both attractive and repulsive solute-solvent systems. The local number density maxima were found near these same densities by the integral equation calculations for both methane + carbon monoxide or carbon dioxide using only Lennard-Jones single-centre parameters as input. The methane + carbon monoxide system is identified as weakly attractive (augmenting), whereas the methane + carbon dioxide system is identified as repulsive (avoidance).  相似文献   

7.
The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu2+), copper-limited (0.3 µM Cu2+) or copper-regular (1.1 µM Cu2+) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [1 Feisthauer S, Vogt C, Modrzynski J, Szlenkier M, Krüger M, Siegert M, Richnow HH. Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim Cosmochim Acta. 2011;75:11731184. doi: 10.1016/j.gca.2010.12.006[Crossref], [Web of Science ®] [Google Scholar]] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM?1 h?1 for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM?1 h?1 for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in 13C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotope signatures.  相似文献   

8.
We present the first spectroscopic measurements using a tunable solid state Cr2+:ZnSe laser emitting at wavelengths between 2.2 μm and 2.8 μm. Photoacoustic measurements on various gases such as methane, carbon monoxide, carbon dioxide, water vapour, nitrous oxide, and ambient air were carried out. In this paper, we present measurements on methane, nitrous oxide, and ambient air. The deduced detection limits are in the low ppm or sub-ppm range, e.g., 0.2 ppm for carbon dioxide, 0.8 ppm for methane and 2.7 ppm for carbon monoxide.  相似文献   

9.
In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18O/16O monitoring for future method development is proposed.  相似文献   

10.
The thermal conductivity of gaseous nitrogen, methane and carbon dioxide has been measured at room temperature and at pressures up to 35 MPa in the cases of nitrogen and methane and up to 5 MPa in the case of carbon dioxide. A transient hot-wire technique was used, which has been described previously. The curves of thermal conductivity versus density for all three gases are found not to be expressible as a polynomial expansion, which is probably due to changes in energy-relaxation behavior with pressure. In the case of carbon dioxide, which was studied close to its critical temperature, some vestiges of anomalous behavior associated with the critical point can be seen. Accurate Eucken factors for the three gases are given. In the case of nitrogen, the experimental value is found to be somewhat below recent predictions.  相似文献   

11.
Abstract

The homogeneous hydrogenation of carbon dioxide into formate anion has been investigated in aqueous solution, using water soluble ruthenium(1I)-phosphine (meta-monosulphonated triphenylphosphine, TPPMS; and 1,3,5-triaza-7-phosphaadamantane, PTA) complexes as catalysts. These reactions take place in amine free medium under mild conditions, bicarbonate anion is more active than carbon dioxide in the reduction. The initial turnover frequenc of the reduction increases with increasing H2 pressure, as it was observed in situ by C and 'H NMR spectroscopy. High pressure FT-IR were used to find evidence for the formation of the catalytically active ruthenium hydride species.  相似文献   

12.
大气压非平衡等离子体甲烷干法重整零维数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
大气压非平衡等离子体由于其独特的非平衡特性,可为甲烷和二氧化碳稳定温室气体分子活化和重整提供非热平衡和活化环境.本文采用了零维等离子体化学反应动力学模型,考虑了详细的CH4/CO2等离子体化学反应集,重点研究了反应气体CH4/CO2摩尔分数(5%—95%)对大气压非平衡等离子体甲烷干法重整制合成气和重要含氧化合物的影响.首先,给出了进料气体不同体积比时电子密度和温度随时间的演化规律,结果表明初始甲烷摩尔分数的提高有利于获得较高的电子密度和电子温度.随后,讨论了主要自由基和离子数密度在不同的甲烷摩尔分数下随着时间的变化规律,并给出了反应气体的转化率、合成气体和重要含氧化合物的选择性.此外,还明确了合成气和含氧化合物主要生成和损耗的化学反应路径,发现甲基和羟基是合成含氧化合物的关键中间体.最后,归纳总结给出了主要等离子体粒子之间的总体等离子体化学反应流程图.  相似文献   

13.
This study presents selected results, applying environmental tracers to investigate lake water–groundwater interactions at two study sites located in Lusatia, Germany. The focus of the investigations were two meromictic pit lakes and their adjacent aquifers. In order to follow hydrodynamic processes between lake and groundwater, mixing patterns within the lakes as well as ages of lake and groundwater, water samples of ground- and lake water were collected at three occasions, representing summer and winter conditions in the aquatic systems. The water samples were analysed for stable isotopes (deuterium, oxygen-18) and tritium and sulphurhexafluoride (SF6 concentration). Lake water profiles of conductivity and 18O could validate the permanent stratification pattern of both the lakes. Groundwater data sets showed a heterogeneous local distribution in stable isotope values between rain and lake water. A two-component mixing model had been adopted only from 18O data to determine lake water proportions in the surrounding groundwater wells in order to correct measured tritium and SF6 concentrations in groundwater samples. This procedure had been hampered by upstream-located wells indicating strong 18O enrichment in groundwater samples. However, rough groundwater ages were estimated. For both study sites, Piston flow ages between 12.9 and 27.7 years were calculated. The investigations showed the good agreement between two different environmental dating tools, considering the marginal data sets.  相似文献   

14.
Abstract

A review of the global cycle of methane is presented with emphasis on its isotopic composition. The history of methane mixing ratios, reconstructed from measurements of air trapped in ice-cores is described. The methane record now extends back to 420 kyr ago in the case of the Vostok ice cores from Antarctica. The trends in mixing ratios and in δ13C values are reported for the two Hemispheres. The increase of the atmospheric methane concentration over the past 200 years, and by 1% per year since 1978, reaching 1.7 ppmv in 1990 is underlined.

The various methane sources are presented. Indeed the authors describe the methane emissions by bacterial activity under anaerobic conditions in wet environments (wetlands, bogs, tundra, rice paddies), in ruminant stomachs and termite guts, and that originating from fossil carbon sources, such as biomass burning, coal mining, industrial losses, automobile exhaust, sea floor vent, and volcanic emissions. Furthermore, the main sinks of methane in the troposphere, soils or waters via oxidation are also reported, and the corresponding kinetic isotope effects.  相似文献   

15.
Using the first-principles method based on the density functional theory(DFT),the structures and electronic properties of different gas hydrates(CO_2,CO,CH_4,and H_2) are investigated within the generalized gradient approximation.The structural stability of methane hydrate is studied in this paper.The results show that the carbon dioxide hydrate is more stable than the other three gas hydrates and its binding energy is-2.36 e V,and that the hydrogen hydrate is less stable and the binding energy is-0.36 e V.Water cages experience repulsion from inner gas molecules,which makes the hydrate structure more stable.Comparing the electronic properties of two kinds of water cages,the energy region of the hydrate with methane is low and the peak is close to the left,indicating that the existence of methane increases the stability of the hydrate structure.Comparing the methane molecule in water cages and a single methane molecule,the energy of electron distribution area of the former is low,showing that the filling of methane enhances the stability of hydrate structure.  相似文献   

16.
Using a theoretical model and mass isotopic balance, biogas (methane and CO2) released from buried products at their microbial degradation was analysed in the landfill of municipal and non-toxic industrial solid organic waste near Kaluga city, Russia. The landfill contains about 1.34×106 tons of waste buried using a ‘sandwich technique’ (successive application of sand–clay and waste layers). The δ13C values of biogenic methane with respect to CO2 were?56.8 (±2.5) ‰, whereas the δ13C of CO2 peaked at+9.12‰ (+1.4±2.3‰ on average), reflecting a virtual fractionation of carbon isotopes in the course of bacterial CO2 reduction at the landfill body. After passing through the aerated soil layers, methane was partially oxidised and characterised by δ13C in the range of?50.6 to?38.2‰, evidencing enrichment in 13C, while the released carbon dioxide had δ13C of?23.3 to?4.04‰, respectively. On the mass isotopic balance for the δ13C values, the methane production in the landfill anaerobic zone and the methane emitted through the aerated landfill surface to the atmosphere, the portion of methane oxidised by methanotrophic bacteria was calculated to be from 10 to 40% (averaged about 25%). According to the theoretical estimation and field measurements, the annual rate of methane production in the landfill reached about 2.9(±1.4)×109 g C CH4 yr?1 or 5.3(±2.6)×106 m3 CH4 yr?1. The average rates of methane production in the landfill and methane emission from landfill to the atmosphere are estimated as about 53 (±26) g C CH4 m?2 d?1 (or 4 (±2) mol CH4 m?2 d?1) and 33 (±12) g C CH4 m?2 d?1 (or 2.7 (±1) mol CH4 m?2 d?1), respectively. The calculated part of methane consumed by methanotrophic bacteria in the aerated part of the landfill was 13(±7) g C CH4 m?2 d?1 (or 1.1(±0.6) mol CH4 m?2 d?1) on average.  相似文献   

17.
Abstract

Gas analyses of the soil atmosphere of lignite mining dumps yielded increased contents of carbon dioxide. To get information about the potential sources and the carbon dioxide releasing capacity of the dumps, samples of dump material were investigated for their contents and isotopic compositions of organic and inorganic carbon as well as the carbon dioxide in the soil atmosphere. The contents of organic and inorganic carbon were found to vary depending on type of dump material. The isotopic composition of the organic carbon ranges between ?24.5 and ?26.5‰, which is typical for humous materials. The carbonates are found to be of marine origin (δ13C: +0.5 to ?1.1‰). By means of the isotope investigations it could be shown that the carbon dioxide in the lignite mining dump arises from these two different sources. Mixing ratios can be calculated using the isotope balance equation. Both reaction paths are associated with oxygen consumption and do not result in an increased gas pressure within the dump.  相似文献   

18.
瓦斯水合物微观晶体结构研究对水合分离技术具有重要理论意义。利用Raman光谱技术对三种含高浓度CO2瓦斯混合气水合反应过程进行在线观测,并对水合物相Raman光谱图进行分析,获取了瓦斯水合物不同生长阶段大、小孔穴占有率,同时利用van der Waals与Platteeuw热力学统计模型间接获得水合指数等晶体结构信息。结果表明,瓦斯水合物孔穴占有率及水合指数在水合物不同生长阶段未发生较大变化,水合物相中大孔穴几乎被客体分子填满,CO2与CH4分子共同占据大孔穴,但CO2占绝大多数,达到78.58%~94.09%,CH4分子仅为4.52%~19.12%,这主要是由于两种分子间存在竞争关系且气样中CO2浓度明显高于CH4,大孔穴占有率维持在97.70%~98.68%;小孔穴占有率为17.93%~82.41%,占有率普遍偏低,且仅有CH4分子;随气样中CH4浓度增加,CH4在大、小孔穴中的占有率均有所增加,且CH4分子在大孔穴中的占有率均明显低于在小孔穴中占有率;水合物生长不同阶段水合指数为6.13~7.33,随气样中CH4浓度的增加,小孔穴占有率有所增加,致使水合指数随之降低;由于瓦斯水合物生长分布不均匀,三种气样对应的不同生长阶段水合指数均呈不规则变化。  相似文献   

19.
Polymer electrolyte membrane (PEM) fuel cells are susceptible to degradation due to the catalyst poisoning caused by CO present in the fuel above certain limits. Although the amount of CO in the fuel may be within the permissible limit, the fuel composition (% CO2, CH4, CO and H2O) and the operating conditions of the cell (level of gas humidification, cell temperature and pressure) can be such that the equilibrium CO content inside the cell may exceed the permissible limit leading to a degradation of the fuel cell performance. In this study, 50 cm2 active area PEM fuel cells were operated at 55–60 °C for periods up to 250 hours to study the effect of methane, carbon dioxide and water in the hydrogen fuel mix on the cell performance (stability of voltage and power output). Furthermore, the stability of fuel cells was also studied during operation of cells in a cyclic dead end / flow through configuration, both with and without the presence of carbon dioxide in the hydrogen stream. The presence of methane up to 10% in the hydrogen stream showed a negligible degradation in the cell performance. The presence of carbon dioxide in the hydrogen stream even at 1–2% level was found to degrade the cell performance. However, this degradation was found to disappear by bleeding only about 0.2% oxygen into the fuel stream.  相似文献   

20.
Abstract

Naturally produced methane shows different δ13C-values with respect to its origin, e.g., geological or biological. Methane-production of ruminants is considered to be the dominant source from the animal kingdom. Isotopic values of rumen methane—given in literature—range between ?80‰ and -50‰ and are related to feed composition and also sampling techniques. Keeping cows, camels and sheep under identical feed conditions and sampling rumen gases via implanted fistulae we compared δPDB 13C-values of methane and CO2 between the species. Referring to mean values obtained from 4 or 5 samples at different times of 11 animals (n = 47) we calculated δPDB 13C-medians resulting in small but not significant differences within and significant differences between the species for CO2 and methane. The δPDB 13C-differences between methane and CO2 were statistically equal within and also between the species. Therefore a linear regression of methane values on CO2 is appropriate and leads to: δPDB 13C(methane)‰ = 1,57 * δPDB 13C(CO2)‰-47‰ with a correlation coefficient of r = 0,87.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号